# HG changeset patch # User wenzelm # Date 1257440338 -3600 # Node ID b9bbd0f3dcdb0fe8827c2dff549b9d61f29ee5fc # Parent 5d78b2bd27dee8a50a614ebf0469642bb4be09f9 tuned header; use plain simultaneous lemma statements -- Pure's &&& should hardly ever occur in user space; diff -r 5d78b2bd27de -r b9bbd0f3dcdb src/HOL/Library/positivstellensatz.ML --- a/src/HOL/Library/positivstellensatz.ML Thu Nov 05 17:02:43 2009 +0100 +++ b/src/HOL/Library/positivstellensatz.ML Thu Nov 05 17:58:58 2009 +0100 @@ -1,7 +1,9 @@ -(* Title: Library/Sum_Of_Squares/positivstellensatz - Author: Amine Chaieb, University of Cambridge - Description: A generic arithmetic prover based on Positivstellensatz certificates --- - also implements Fourrier-Motzkin elimination as a special case Fourrier-Motzkin elimination. +(* Title: HOL/Library/positivstellensatz.ML + Author: Amine Chaieb, University of Cambridge + +A generic arithmetic prover based on Positivstellensatz certificates +--- also implements Fourrier-Motzkin elimination as a special case +Fourrier-Motzkin elimination. *) (* A functor for finite mappings based on Tables *) @@ -187,87 +189,90 @@ if exists (curry op aconv (concl_of tha)) (#hyps (rep_thm thb)) then equal_elim (symmetric (deduct_antisym_rule tha thb)) tha else thb; -fun conjunctions th = case try Conjunction.elim th of - SOME (th1,th2) => (conjunctions th1) @ conjunctions th2 - | NONE => [th]; - -val pth = @{lemma "(((x::real) < y) == (y - x > 0)) &&& ((x <= y) == (y - x >= 0)) - &&& ((x = y) == (x - y = 0)) &&& ((~(x < y)) == (x - y >= 0)) &&& ((~(x <= y)) == (x - y > 0)) - &&& ((~(x = y)) == (x - y > 0 | -(x - y) > 0))" - by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)} |> -conjunctions; +val pth = @{lemma "(((x::real) < y) == (y - x > 0))" and "((x <= y) == (y - x >= 0))" and + "((x = y) == (x - y = 0))" and "((~(x < y)) == (x - y >= 0))" and + "((~(x <= y)) == (x - y > 0))" and "((~(x = y)) == (x - y > 0 | -(x - y) > 0))" + by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)}; val pth_final = @{lemma "(~p ==> False) ==> p" by blast} val pth_add = - @{lemma "(x = (0::real) ==> y = 0 ==> x + y = 0 ) &&& ( x = 0 ==> y >= 0 ==> x + y >= 0) - &&& (x = 0 ==> y > 0 ==> x + y > 0) &&& (x >= 0 ==> y = 0 ==> x + y >= 0) - &&& (x >= 0 ==> y >= 0 ==> x + y >= 0) &&& (x >= 0 ==> y > 0 ==> x + y > 0) - &&& (x > 0 ==> y = 0 ==> x + y > 0) &&& (x > 0 ==> y >= 0 ==> x + y > 0) - &&& (x > 0 ==> y > 0 ==> x + y > 0)" by simp_all} |> conjunctions ; + @{lemma "(x = (0::real) ==> y = 0 ==> x + y = 0 )" and "( x = 0 ==> y >= 0 ==> x + y >= 0)" and + "(x = 0 ==> y > 0 ==> x + y > 0)" and "(x >= 0 ==> y = 0 ==> x + y >= 0)" and + "(x >= 0 ==> y >= 0 ==> x + y >= 0)" and "(x >= 0 ==> y > 0 ==> x + y > 0)" and + "(x > 0 ==> y = 0 ==> x + y > 0)" and "(x > 0 ==> y >= 0 ==> x + y > 0)" and + "(x > 0 ==> y > 0 ==> x + y > 0)" by simp_all}; val pth_mul = - @{lemma "(x = (0::real) ==> y = 0 ==> x * y = 0) &&& (x = 0 ==> y >= 0 ==> x * y = 0) &&& - (x = 0 ==> y > 0 ==> x * y = 0) &&& (x >= 0 ==> y = 0 ==> x * y = 0) &&& - (x >= 0 ==> y >= 0 ==> x * y >= 0 ) &&& ( x >= 0 ==> y > 0 ==> x * y >= 0 ) &&& - (x > 0 ==> y = 0 ==> x * y = 0 ) &&& ( x > 0 ==> y >= 0 ==> x * y >= 0 ) &&& - (x > 0 ==> y > 0 ==> x * y > 0)" + @{lemma "(x = (0::real) ==> y = 0 ==> x * y = 0)" and "(x = 0 ==> y >= 0 ==> x * y = 0)" and + "(x = 0 ==> y > 0 ==> x * y = 0)" and "(x >= 0 ==> y = 0 ==> x * y = 0)" and + "(x >= 0 ==> y >= 0 ==> x * y >= 0)" and "(x >= 0 ==> y > 0 ==> x * y >= 0)" and + "(x > 0 ==> y = 0 ==> x * y = 0)" and "(x > 0 ==> y >= 0 ==> x * y >= 0)" and + "(x > 0 ==> y > 0 ==> x * y > 0)" by (auto intro: mult_mono[where a="0::real" and b="x" and d="y" and c="0", simplified] - mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])} |> conjunctions; + mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])}; val pth_emul = @{lemma "y = (0::real) ==> x * y = 0" by simp}; val pth_square = @{lemma "x * x >= (0::real)" by simp}; -val weak_dnf_simps = List.take (simp_thms, 34) - @ conjunctions @{lemma "((P & (Q | R)) = ((P&Q) | (P&R))) &&& ((Q | R) & P) = ((Q&P) | (R&P)) &&& (P & Q) = (Q & P) &&& ((P | Q) = (Q | P))" by blast+}; +val weak_dnf_simps = + List.take (simp_thms, 34) @ + @{lemma "((P & (Q | R)) = ((P&Q) | (P&R)))" and "((Q | R) & P) = ((Q&P) | (R&P))" and + "(P & Q) = (Q & P)" and "((P | Q) = (Q | P))" by blast+}; -val nnfD_simps = conjunctions @{lemma "((~(P & Q)) = (~P | ~Q)) &&& ((~(P | Q)) = (~P & ~Q) ) &&& ((P --> Q) = (~P | Q) ) &&& ((P = Q) = ((P & Q) | (~P & ~ Q))) &&& ((~(P = Q)) = ((P & ~ Q) | (~P & Q)) ) &&& ((~ ~(P)) = P)" by blast+} +val nnfD_simps = + @{lemma "((~(P & Q)) = (~P | ~Q))" and "((~(P | Q)) = (~P & ~Q) )" and + "((P --> Q) = (~P | Q) )" and "((P = Q) = ((P & Q) | (~P & ~ Q)))" and + "((~(P = Q)) = ((P & ~ Q) | (~P & Q)) )" and "((~ ~(P)) = P)" by blast+}; val choice_iff = @{lemma "(ALL x. EX y. P x y) = (EX f. ALL x. P x (f x))" by metis}; -val prenex_simps = map (fn th => th RS sym) ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @ @{thms "all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); +val prenex_simps = + map (fn th => th RS sym) + ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @ + @{thms "all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); -val real_abs_thms1 = conjunctions @{lemma - "((-1 * abs(x::real) >= r) = (-1 * x >= r & 1 * x >= r)) &&& - ((-1 * abs(x) + a >= r) = (a + -1 * x >= r & a + 1 * x >= r)) &&& - ((a + -1 * abs(x) >= r) = (a + -1 * x >= r & a + 1 * x >= r)) &&& - ((a + -1 * abs(x) + b >= r) = (a + -1 * x + b >= r & a + 1 * x + b >= r)) &&& - ((a + b + -1 * abs(x) >= r) = (a + b + -1 * x >= r & a + b + 1 * x >= r)) &&& - ((a + b + -1 * abs(x) + c >= r) = (a + b + -1 * x + c >= r & a + b + 1 * x + c >= r)) &&& - ((-1 * max x y >= r) = (-1 * x >= r & -1 * y >= r)) &&& - ((-1 * max x y + a >= r) = (a + -1 * x >= r & a + -1 * y >= r)) &&& - ((a + -1 * max x y >= r) = (a + -1 * x >= r & a + -1 * y >= r)) &&& - ((a + -1 * max x y + b >= r) = (a + -1 * x + b >= r & a + -1 * y + b >= r)) &&& - ((a + b + -1 * max x y >= r) = (a + b + -1 * x >= r & a + b + -1 * y >= r)) &&& - ((a + b + -1 * max x y + c >= r) = (a + b + -1 * x + c >= r & a + b + -1 * y + c >= r)) &&& - ((1 * min x y >= r) = (1 * x >= r & 1 * y >= r)) &&& - ((1 * min x y + a >= r) = (a + 1 * x >= r & a + 1 * y >= r)) &&& - ((a + 1 * min x y >= r) = (a + 1 * x >= r & a + 1 * y >= r)) &&& - ((a + 1 * min x y + b >= r) = (a + 1 * x + b >= r & a + 1 * y + b >= r) )&&& - ((a + b + 1 * min x y >= r) = (a + b + 1 * x >= r & a + b + 1 * y >= r)) &&& - ((a + b + 1 * min x y + c >= r) = (a + b + 1 * x + c >= r & a + b + 1 * y + c >= r)) &&& - ((min x y >= r) = (x >= r & y >= r)) &&& - ((min x y + a >= r) = (a + x >= r & a + y >= r)) &&& - ((a + min x y >= r) = (a + x >= r & a + y >= r)) &&& - ((a + min x y + b >= r) = (a + x + b >= r & a + y + b >= r)) &&& - ((a + b + min x y >= r) = (a + b + x >= r & a + b + y >= r) )&&& - ((a + b + min x y + c >= r) = (a + b + x + c >= r & a + b + y + c >= r)) &&& - ((-1 * abs(x) > r) = (-1 * x > r & 1 * x > r)) &&& - ((-1 * abs(x) + a > r) = (a + -1 * x > r & a + 1 * x > r)) &&& - ((a + -1 * abs(x) > r) = (a + -1 * x > r & a + 1 * x > r)) &&& - ((a + -1 * abs(x) + b > r) = (a + -1 * x + b > r & a + 1 * x + b > r)) &&& - ((a + b + -1 * abs(x) > r) = (a + b + -1 * x > r & a + b + 1 * x > r)) &&& - ((a + b + -1 * abs(x) + c > r) = (a + b + -1 * x + c > r & a + b + 1 * x + c > r)) &&& - ((-1 * max x y > r) = ((-1 * x > r) & -1 * y > r)) &&& - ((-1 * max x y + a > r) = (a + -1 * x > r & a + -1 * y > r)) &&& - ((a + -1 * max x y > r) = (a + -1 * x > r & a + -1 * y > r)) &&& - ((a + -1 * max x y + b > r) = (a + -1 * x + b > r & a + -1 * y + b > r)) &&& - ((a + b + -1 * max x y > r) = (a + b + -1 * x > r & a + b + -1 * y > r)) &&& - ((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r & a + b + -1 * y + c > r)) &&& - ((min x y > r) = (x > r & y > r)) &&& - ((min x y + a > r) = (a + x > r & a + y > r)) &&& - ((a + min x y > r) = (a + x > r & a + y > r)) &&& - ((a + min x y + b > r) = (a + x + b > r & a + y + b > r)) &&& - ((a + b + min x y > r) = (a + b + x > r & a + b + y > r)) &&& - ((a + b + min x y + c > r) = (a + b + x + c > r & a + b + y + c > r))" +val real_abs_thms1 = @{lemma + "((-1 * abs(x::real) >= r) = (-1 * x >= r & 1 * x >= r))" and + "((-1 * abs(x) + a >= r) = (a + -1 * x >= r & a + 1 * x >= r))" and + "((a + -1 * abs(x) >= r) = (a + -1 * x >= r & a + 1 * x >= r))" and + "((a + -1 * abs(x) + b >= r) = (a + -1 * x + b >= r & a + 1 * x + b >= r))" and + "((a + b + -1 * abs(x) >= r) = (a + b + -1 * x >= r & a + b + 1 * x >= r))" and + "((a + b + -1 * abs(x) + c >= r) = (a + b + -1 * x + c >= r & a + b + 1 * x + c >= r))" and + "((-1 * max x y >= r) = (-1 * x >= r & -1 * y >= r))" and + "((-1 * max x y + a >= r) = (a + -1 * x >= r & a + -1 * y >= r))" and + "((a + -1 * max x y >= r) = (a + -1 * x >= r & a + -1 * y >= r))" and + "((a + -1 * max x y + b >= r) = (a + -1 * x + b >= r & a + -1 * y + b >= r))" and + "((a + b + -1 * max x y >= r) = (a + b + -1 * x >= r & a + b + -1 * y >= r))" and + "((a + b + -1 * max x y + c >= r) = (a + b + -1 * x + c >= r & a + b + -1 * y + c >= r))" and + "((1 * min x y >= r) = (1 * x >= r & 1 * y >= r))" and + "((1 * min x y + a >= r) = (a + 1 * x >= r & a + 1 * y >= r))" and + "((a + 1 * min x y >= r) = (a + 1 * x >= r & a + 1 * y >= r))" and + "((a + 1 * min x y + b >= r) = (a + 1 * x + b >= r & a + 1 * y + b >= r))" and + "((a + b + 1 * min x y >= r) = (a + b + 1 * x >= r & a + b + 1 * y >= r))" and + "((a + b + 1 * min x y + c >= r) = (a + b + 1 * x + c >= r & a + b + 1 * y + c >= r))" and + "((min x y >= r) = (x >= r & y >= r))" and + "((min x y + a >= r) = (a + x >= r & a + y >= r))" and + "((a + min x y >= r) = (a + x >= r & a + y >= r))" and + "((a + min x y + b >= r) = (a + x + b >= r & a + y + b >= r))" and + "((a + b + min x y >= r) = (a + b + x >= r & a + b + y >= r))" and + "((a + b + min x y + c >= r) = (a + b + x + c >= r & a + b + y + c >= r))" and + "((-1 * abs(x) > r) = (-1 * x > r & 1 * x > r))" and + "((-1 * abs(x) + a > r) = (a + -1 * x > r & a + 1 * x > r))" and + "((a + -1 * abs(x) > r) = (a + -1 * x > r & a + 1 * x > r))" and + "((a + -1 * abs(x) + b > r) = (a + -1 * x + b > r & a + 1 * x + b > r))" and + "((a + b + -1 * abs(x) > r) = (a + b + -1 * x > r & a + b + 1 * x > r))" and + "((a + b + -1 * abs(x) + c > r) = (a + b + -1 * x + c > r & a + b + 1 * x + c > r))" and + "((-1 * max x y > r) = ((-1 * x > r) & -1 * y > r))" and + "((-1 * max x y + a > r) = (a + -1 * x > r & a + -1 * y > r))" and + "((a + -1 * max x y > r) = (a + -1 * x > r & a + -1 * y > r))" and + "((a + -1 * max x y + b > r) = (a + -1 * x + b > r & a + -1 * y + b > r))" and + "((a + b + -1 * max x y > r) = (a + b + -1 * x > r & a + b + -1 * y > r))" and + "((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r & a + b + -1 * y + c > r))" and + "((min x y > r) = (x > r & y > r))" and + "((min x y + a > r) = (a + x > r & a + y > r))" and + "((a + min x y > r) = (a + x > r & a + y > r))" and + "((a + min x y + b > r) = (a + x + b > r & a + y + b > r))" and + "((a + b + min x y > r) = (a + b + x > r & a + b + y > r))" and + "((a + b + min x y + c > r) = (a + b + x + c > r & a + b + y + c > r))" by auto}; val abs_split' = @{lemma "P (abs (x::'a::ordered_idom)) == (x >= 0 & P x | x < 0 & P (-x))"