# HG changeset patch # User chaieb # Date 1240785622 -3600 # Node ID ba5bce0c26de7569263c9465c13f1f1e32e93311 # Parent 1f39aea228b00fbeb5041c34f657d878c54fe518# Parent 796cee3729f094f5ece48c12f79044d9f2665f4f merged diff -r 1f39aea228b0 -r ba5bce0c26de src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Sun Apr 26 20:23:09 2009 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Sun Apr 26 23:40:22 2009 +0100 @@ -963,7 +963,7 @@ (* {a_{n+k}}_0^infty Corresponds to (f - setsum (\i. a_i * x^i))/x^h, for h>0*) lemma fps_power_mult_eq_shift: - "X^Suc k * Abs_fps (\n. a (n + Suc k)) = Abs_fps a - setsum (\i. fps_const (a i :: 'a:: field) * X^i) {0 .. k}" (is "?lhs = ?rhs") + "X^Suc k * Abs_fps (\n. a (n + Suc k)) = Abs_fps a - setsum (\i. fps_const (a i :: 'a:: comm_ring_1) * X^i) {0 .. k}" (is "?lhs = ?rhs") proof- {fix n:: nat have "?lhs $ n = (if n < Suc k then 0 else a n)" @@ -974,7 +974,7 @@ next case (Suc k) note th = Suc.hyps[symmetric] - have "(Abs_fps a - setsum (\i. fps_const (a i :: 'a:: field) * X^i) {0 .. Suc k})$n = (Abs_fps a - setsum (\i. fps_const (a i :: 'a:: field) * X^i) {0 .. k} - fps_const (a (Suc k)) * X^ Suc k) $ n" by (simp add: ring_simps) + have "(Abs_fps a - setsum (\i. fps_const (a i :: 'a) * X^i) {0 .. Suc k})$n = (Abs_fps a - setsum (\i. fps_const (a i :: 'a) * X^i) {0 .. k} - fps_const (a (Suc k)) * X^ Suc k) $ n" by (simp add: ring_simps) also have "\ = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * X^ Suc k)$n" using th unfolding fps_sub_nth by simp @@ -1012,8 +1012,9 @@ lemma fps_mult_X_deriv_shift: "X* fps_deriv a = Abs_fps (\n. of_nat n* a$n)" by (simp add: fps_eq_iff) + lemma fps_mult_XD_shift: - "(XD ^^ k) (a:: ('a::{comm_ring_1, recpower, ring_char_0}) fps) = Abs_fps (\n. (of_nat n ^ k) * a$n)" + "(XD ^^ k) (a:: ('a::{comm_ring_1, recpower}) fps) = Abs_fps (\n. (of_nat n ^ k) * a$n)" by (induct k arbitrary: a) (simp_all add: power_Suc XD_def fps_eq_iff ring_simps del: One_nat_def) subsubsection{* Rule 3 is trivial and is given by @{text fps_times_def}*}