# HG changeset patch # User wenzelm # Date 1294849190 -3600 # Node ID ba60efa2fd08a1972e4657147869f4f6e2f446b3 # Parent 276078f01ada4db73a0902a8b3a4b5b6251c628a eliminated global prems; diff -r 276078f01ada -r ba60efa2fd08 src/HOL/Bali/AxSound.thy --- a/src/HOL/Bali/AxSound.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/Bali/AxSound.thy Wed Jan 12 17:19:50 2011 +0100 @@ -293,7 +293,7 @@ and da: "normal s0 \ \prg=G,cls=accC,lcl=L\\dom (locals (store s0))\t\C" and elim: "\Q v s1 Z; s1\\(G,L)\ \ concl" shows concl -using prems +using assms by (simp add: ax_valids2_def triple_valid2_def2) fast (* why consumes 5?. If I want to apply this lemma in a context wgere \ normal s0 holds, diff -r 276078f01ada -r ba60efa2fd08 src/HOL/HOLCF/Completion.thy --- a/src/HOL/HOLCF/Completion.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/HOLCF/Completion.thy Wed Jan 12 17:19:50 2011 +0100 @@ -26,7 +26,7 @@ assumes "\x y. \x \ A; y \ A\ \ \z\A. x \ z \ y \ z" assumes "\x y. \x \ y; y \ A\ \ x \ A" shows "ideal A" -unfolding ideal_def using prems by fast +unfolding ideal_def using assms by fast lemma idealD1: "ideal A \ \x. x \ A" diff -r 276078f01ada -r ba60efa2fd08 src/HOL/HOLCF/Domain.thy --- a/src/HOL/HOLCF/Domain.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/HOLCF/Domain.thy Wed Jan 12 17:19:50 2011 +0100 @@ -211,7 +211,7 @@ assumes "chain d" and "chain t" assumes "\i. isodefl (d i) (t i)" shows "isodefl (\i. d i) (\i. t i)" -using prems unfolding isodefl_def +using assms unfolding isodefl_def by (simp add: contlub_cfun_arg contlub_cfun_fun) lemma isodefl_fix: diff -r 276078f01ada -r ba60efa2fd08 src/HOL/HOLCF/IOA/meta_theory/Seq.thy --- a/src/HOL/HOLCF/IOA/meta_theory/Seq.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/HOLCF/IOA/meta_theory/Seq.thy Wed Jan 12 17:19:50 2011 +0100 @@ -312,7 +312,7 @@ apply (intro strip) apply (erule exE) apply (erule subst) -apply (rule prems) +apply (rule assms) done diff -r 276078f01ada -r ba60efa2fd08 src/HOL/HOLCF/Universal.thy --- a/src/HOL/HOLCF/Universal.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/HOLCF/Universal.thy Wed Jan 12 17:19:50 2011 +0100 @@ -183,7 +183,7 @@ case (ubasis_le_upper S b a i) thus ?case apply clarsimp apply (subst ubasis_until_same) - apply (erule (3) prems) + apply (erule (3) assms) apply (erule (2) ubasis_le.ubasis_le_upper) done qed diff -r 276078f01ada -r ba60efa2fd08 src/HOL/IMP/Natural.thy --- a/src/HOL/IMP/Natural.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/IMP/Natural.thy Wed Jan 12 17:19:50 2011 +0100 @@ -1,5 +1,4 @@ (* Title: HOL/IMP/Natural.thy - ID: $Id$ Author: Tobias Nipkow & Robert Sandner, TUM Isar Version: Gerwin Klein, 2001; additional proofs by Lawrence Paulson Copyright 1996 TUM @@ -270,7 +269,7 @@ theorem com_det: assumes "\c,s\ \\<^sub>c t" and "\c,s\ \\<^sub>c u" shows "u = t" - using prems + using assms proof (induct arbitrary: u set: evalc) fix s u assume "\\,s\ \\<^sub>c u" thus "u = s" by blast @@ -331,7 +330,7 @@ theorem assumes "\c,s\ \\<^sub>c t" and "\c,s\ \\<^sub>c u" shows "u = t" - using prems + using assms proof (induct arbitrary: u) -- "the simple @{text \} case for demonstration:" fix s u assume "\\,s\ \\<^sub>c u" diff -r 276078f01ada -r ba60efa2fd08 src/HOL/IMP/Transition.thy --- a/src/HOL/IMP/Transition.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/IMP/Transition.thy Wed Jan 12 17:19:50 2011 +0100 @@ -272,7 +272,7 @@ lemma evalc_imp_evalc1: assumes "\c,s\ \\<^sub>c s'" shows "\c, s\ \\<^sub>1\<^sup>* \s'\" - using prems + using assms proof induct fix s show "\\,s\ \\<^sub>1\<^sup>* \s\" by auto next @@ -550,7 +550,7 @@ shows "\c1;c2,s1\ \\<^sub>1\<^sup>* cs3" proof - -- {* The induction rule needs @{text P} to be a function of @{term "Some c1"} *} - from prems + from assms have "\(\c. if c = None then c2 else the c; c2) (Some c1),s1\ \\<^sub>1\<^sup>* cs3" apply (induct rule: converse_rtrancl_induct2) apply simp diff -r 276078f01ada -r ba60efa2fd08 src/HOL/IMPP/Hoare.thy --- a/src/HOL/IMPP/Hoare.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/IMPP/Hoare.thy Wed Jan 12 17:19:50 2011 +0100 @@ -369,18 +369,18 @@ prefer 2 apply (simp add: card_seteq) apply simp -apply (erule prems(3-)) (*MGF_lemma1*) +apply (erule assms(3-)) (*MGF_lemma1*) apply (rule ballI) -apply (rule prems) (*hoare_derivs.asm*) +apply (rule assms) (*hoare_derivs.asm*) apply fast -apply (erule prems(3-)) (*MGF_lemma1*) +apply (erule assms(3-)) (*MGF_lemma1*) apply (rule ballI) apply (case_tac "mgt_call pn : G") -apply (rule prems) (*hoare_derivs.asm*) +apply (rule assms) (*hoare_derivs.asm*) apply fast -apply (rule prems(2-)) (*MGT_BodyN*) +apply (rule assms(2-)) (*MGT_BodyN*) apply (drule spec, erule impE, erule_tac [2] impE, drule_tac [3] spec, erule_tac [3] mp) -apply (erule_tac [3] prems(4-)) +apply (erule_tac [3] assms(4-)) apply fast apply (drule finite_subset) apply (erule finite_imageI) diff -r 276078f01ada -r ba60efa2fd08 src/HOL/Library/Fundamental_Theorem_Algebra.thy --- a/src/HOL/Library/Fundamental_Theorem_Algebra.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/Library/Fundamental_Theorem_Algebra.thy Wed Jan 12 17:19:50 2011 +0100 @@ -793,7 +793,7 @@ assumes "\x. poly p x = 0 \ poly q x = 0" and "degree p = n" and "n \ 0" shows "p dvd (q ^ n)" -using prems +using assms proof(induct n arbitrary: p q rule: nat_less_induct) fix n::nat fix p q :: "complex poly" assume IH: "\mp q. diff -r 276078f01ada -r ba60efa2fd08 src/HOL/TLA/TLA.thy --- a/src/HOL/TLA/TLA.thy Wed Jan 12 17:14:27 2011 +0100 +++ b/src/HOL/TLA/TLA.thy Wed Jan 12 17:19:50 2011 +0100 @@ -520,7 +520,7 @@ shows "|- []P --> []A" apply clarsimp apply (drule BoxPrime [temp_use]) - apply (auto simp: Init_stp_act_rev [try_rewrite] intro!: prems [temp_use] + apply (auto simp: Init_stp_act_rev [try_rewrite] intro!: assms [temp_use] elim!: STL4E [temp_use]) done