# HG changeset patch # User wenzelm # Date 1632841745 -7200 # Node ID ba880f3a4e525e69cfbc95443d5b91f9c8b25d09 # Parent e585e5a906bab3d4bc77f743d0157ce85723dac5 tuned antiquotations; diff -r e585e5a906ba -r ba880f3a4e52 src/CCL/Wfd.thy --- a/src/CCL/Wfd.thy Tue Sep 28 17:08:38 2021 +0200 +++ b/src/CCL/Wfd.thy Tue Sep 28 17:09:05 2021 +0200 @@ -441,7 +441,7 @@ fun is_rigid_prog t = (case (Logic.strip_assums_concl t) of - \<^Const_>\Trueprop for \\<^Const_>\mem _ for a _\\\ => null (Term.add_vars a []) + \<^Const_>\Trueprop for \<^Const_>\mem _ for a _\\ => null (Term.add_vars a []) | _ => false) in diff -r e585e5a906ba -r ba880f3a4e52 src/FOLP/IFOLP.thy --- a/src/FOLP/IFOLP.thy Tue Sep 28 17:08:38 2021 +0200 +++ b/src/FOLP/IFOLP.thy Tue Sep 28 17:09:05 2021 +0200 @@ -612,7 +612,7 @@ structure Hypsubst = Hypsubst ( (*Take apart an equality judgement; otherwise raise Match!*) - fun dest_eq \<^Const_>\Proof for \\<^Const_>\eq _ for t u\\ _\ = (t, u); + fun dest_eq \<^Const_>\Proof for \<^Const_>\eq _ for t u\ _\ = (t, u); val imp_intr = @{thm impI} diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/HOLCF/Tools/holcf_library.ML --- a/src/HOL/HOLCF/Tools/holcf_library.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/HOLCF/Tools/holcf_library.ML Tue Sep 28 17:09:05 2021 +0200 @@ -58,7 +58,7 @@ let val T = Term.range_type (Term.fastype_of t) val UNIV_const = \<^term>\UNIV :: nat set\ - in \<^Const>\lub T for \\<^Const>\image \\<^Type>\nat\\ T for t UNIV_const\\\ end + in \<^Const>\lub T for \<^Const>\image \<^Type>\nat\ T for t UNIV_const\\ end (*** Continuous function space ***) diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/Hoare/hoare_tac.ML --- a/src/HOL/Hoare/hoare_tac.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/Hoare/hoare_tac.ML Tue Sep 28 17:09:05 2021 +0200 @@ -49,7 +49,7 @@ Abs (_, T, _) => T | Const (_, Type (_, [_, Type (_, [T, _])])) $ _ => T); in - \<^Const>\case_prod T T2 \\<^Type>\bool\\ for \absfree (x, T) z\\ + \<^Const>\case_prod T T2 \<^Type>\bool\ for \absfree (x, T) z\\ end; (** maps [x1,...,xn] to (x1,...,xn) and types**) diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/Tools/Argo/argo_real.ML --- a/src/HOL/Tools/Argo/argo_real.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/Tools/Argo/argo_real.ML Tue Sep 28 17:09:05 2021 +0200 @@ -12,25 +12,25 @@ fun trans_type _ \<^Type>\real\ tcx = SOME (Argo_Expr.Real, tcx) | trans_type _ _ _ = NONE -fun trans_term f \<^Const_>\uminus \\<^Type>\real\\ for t\ tcx = +fun trans_term f \<^Const_>\uminus \<^Type>\real\ for t\ tcx = tcx |> f t |>> Argo_Expr.mk_neg |> SOME - | trans_term f \<^Const_>\plus \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\plus \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_add2 |> SOME - | trans_term f \<^Const_>\minus \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\minus \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_sub |> SOME - | trans_term f \<^Const_>\times \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\times \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_mul |> SOME - | trans_term f \<^Const_>\divide \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\divide \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_div |> SOME - | trans_term f \<^Const_>\min \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\min \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_min |> SOME - | trans_term f \<^Const_>\max \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\max \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_max |> SOME - | trans_term f \<^Const_>\abs \\<^Type>\real\\ for t\ tcx = + | trans_term f \<^Const_>\abs \<^Type>\real\ for t\ tcx = tcx |> f t |>> Argo_Expr.mk_abs |> SOME - | trans_term f \<^Const_>\less \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\less \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_lt |> SOME - | trans_term f \<^Const_>\less_eq \\<^Type>\real\\ for t1 t2\ tcx = + | trans_term f \<^Const_>\less_eq \<^Type>\real\ for t1 t2\ tcx = tcx |> f t1 ||>> f t2 |>> uncurry Argo_Expr.mk_le |> SOME | trans_term _ t tcx = (case try HOLogic.dest_number t of @@ -40,12 +40,12 @@ (* reverse translation *) -fun mk_plus t1 t2 = \<^Const>\plus \\<^Type>\real\\ for t1 t2\ +fun mk_plus t1 t2 = \<^Const>\plus \<^Type>\real\ for t1 t2\ fun mk_sum ts = uncurry (fold_rev mk_plus) (split_last ts) -fun mk_times t1 t2 = \<^Const>\times \\<^Type>\real\\ for t1 t2\ -fun mk_divide t1 t2 = \<^Const>\divide \\<^Type>\real\\ for t1 t2\ -fun mk_le t1 t2 = \<^Const>\less_eq \\<^Type>\real\\ for t1 t2\ -fun mk_lt t1 t2 = \<^Const>\less \\<^Type>\real\\ for t1 t2\ +fun mk_times t1 t2 = \<^Const>\times \<^Type>\real\ for t1 t2\ +fun mk_divide t1 t2 = \<^Const>\divide \<^Type>\real\ for t1 t2\ +fun mk_le t1 t2 = \<^Const>\less_eq \<^Type>\real\ for t1 t2\ +fun mk_lt t1 t2 = \<^Const>\less \<^Type>\real\ for t1 t2\ fun mk_real_num i = HOLogic.mk_number \<^Type>\real\ i @@ -54,17 +54,17 @@ in if q = 1 then mk_real_num p else mk_divide (mk_real_num p) (mk_real_num q) end fun term_of _ (Argo_Expr.E (Argo_Expr.Num n, _)) = SOME (mk_number n) - | term_of f (Argo_Expr.E (Argo_Expr.Neg, [e])) = SOME \<^Const>\uminus \\<^Type>\real\\ for \f e\\ + | term_of f (Argo_Expr.E (Argo_Expr.Neg, [e])) = SOME \<^Const>\uminus \<^Type>\real\ for \f e\\ | term_of f (Argo_Expr.E (Argo_Expr.Add, es)) = SOME (mk_sum (map f es)) | term_of f (Argo_Expr.E (Argo_Expr.Sub, [e1, e2])) = - SOME \<^Const>\minus \\<^Type>\real\\ for \f e1\ \f e2\\ + SOME \<^Const>\minus \<^Type>\real\ for \f e1\ \f e2\\ | term_of f (Argo_Expr.E (Argo_Expr.Mul, [e1, e2])) = SOME (mk_times (f e1) (f e2)) | term_of f (Argo_Expr.E (Argo_Expr.Div, [e1, e2])) = SOME (mk_divide (f e1) (f e2)) | term_of f (Argo_Expr.E (Argo_Expr.Min, [e1, e2])) = - SOME \<^Const>\min \\<^Type>\real\\ for \f e1\ \f e2\\ + SOME \<^Const>\min \<^Type>\real\ for \f e1\ \f e2\\ | term_of f (Argo_Expr.E (Argo_Expr.Max, [e1, e2])) = - SOME \<^Const>\max \\<^Type>\real\\ for \f e1\ \f e2\\ - | term_of f (Argo_Expr.E (Argo_Expr.Abs, [e])) = SOME \<^Const>\abs \\<^Type>\real\\ for \f e\\ + SOME \<^Const>\max \<^Type>\real\ for \f e1\ \f e2\\ + | term_of f (Argo_Expr.E (Argo_Expr.Abs, [e])) = SOME \<^Const>\abs \<^Type>\real\ for \f e\\ | term_of f (Argo_Expr.E (Argo_Expr.Le, [e1, e2])) = SOME (mk_le (f e1) (f e2)) | term_of f (Argo_Expr.E (Argo_Expr.Lt, [e1, e2])) = SOME (mk_lt (f e1) (f e2)) | term_of _ _ = NONE @@ -97,10 +97,10 @@ local -fun is_add2 \<^Const_>\plus \\<^Type>\real\\ for _ _\ = true +fun is_add2 \<^Const_>\plus \<^Type>\real\ for _ _\ = true | is_add2 _ = false -fun is_add3 \<^Const_>\plus \\<^Type>\real\\ for _ t\ = is_add2 t +fun is_add3 \<^Const_>\plus \<^Type>\real\ for _ t\ = is_add2 t | is_add3 _ = false val flatten_thm = mk_rewr @{lemma "(a::real) + b + c = a + (b + c)" by simp} diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/Tools/Argo/argo_tactic.ML --- a/src/HOL/Tools/Argo/argo_tactic.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/Tools/Argo/argo_tactic.ML Tue Sep 28 17:09:05 2021 +0200 @@ -600,7 +600,7 @@ fun unclausify (thm, lits) ls = (case (Thm.prop_of thm, lits) of - (\<^Const_>\Trueprop for \\<^Const_>\False\\\, [(_, ct)]) => + (\<^Const_>\Trueprop for \<^Const_>\False\\, [(_, ct)]) => let val thm = Thm.implies_intr ct thm in (discharge thm unclausify_rule1 handle THM _ => discharge thm unclausify_rule2, ls) end | _ => (thm, Ord_List.union lit_ord lits ls)) diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/Tools/Meson/meson.ML --- a/src/HOL/Tools/Meson/meson.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/Tools/Meson/meson.ML Tue Sep 28 17:09:05 2021 +0200 @@ -261,9 +261,9 @@ fun refl_clause_aux 0 th = th | refl_clause_aux n th = case HOLogic.dest_Trueprop (Thm.concl_of th) of - \<^Const_>\disj for \\<^Const_>\disj for _ _\\ _\ => + \<^Const_>\disj for \<^Const_>\disj for _ _\ _\ => refl_clause_aux n (th RS disj_assoc) (*isolate an atom as first disjunct*) - | \<^Const_>\disj for \\<^Const_>\Not for \\<^Const_>\HOL.eq _ for t u\\\\ _\ => + | \<^Const_>\disj for \<^Const_>\Not for \<^Const_>\HOL.eq _ for t u\\ _\ => if eliminable(t,u) then refl_clause_aux (n-1) (th RS not_refl_disj_D) (*Var inequation: delete*) else refl_clause_aux (n-1) (th RS disj_comm) (*not between Vars: ignore*) @@ -271,7 +271,7 @@ | _ => (*not a disjunction*) th; fun notequal_lits_count \<^Const_>\disj for P Q\ = notequal_lits_count P + notequal_lits_count Q - | notequal_lits_count \<^Const_>\Not for \\<^Const_>\HOL.eq _ for _ _\\\ = 1 + | notequal_lits_count \<^Const_>\Not for \<^Const_>\HOL.eq _ for _ _\\ = 1 | notequal_lits_count _ = 0; (*Simplify a clause by applying reflexivity to its negated equality literals*) @@ -414,7 +414,7 @@ (**** Generation of contrapositives ****) -fun is_left \<^Const_>\Trueprop for \\<^Const_>\disj for \\<^Const_>\disj for _ _\\ _\\\ = true +fun is_left \<^Const_>\Trueprop for \<^Const_>\disj for \<^Const_>\disj for _ _\ _\\ = true | is_left _ = false; (*Associate disjuctions to right -- make leftmost disjunct a LITERAL*) @@ -435,7 +435,7 @@ fun rigid t = not (is_Var (head_of t)); -fun ok4horn \<^Const_>\Trueprop for \\<^Const_>\disj for t _\\\ = rigid t +fun ok4horn \<^Const_>\Trueprop for \<^Const_>\disj for t _\\ = rigid t | ok4horn \<^Const_>\Trueprop for t\ = rigid t | ok4horn _ = false; @@ -470,7 +470,7 @@ (***** MESON PROOF PROCEDURE *****) -fun rhyps (\<^Const_>\Pure.imp for \\<^Const_>\Trueprop for A\\ phi\, As) = rhyps(phi, A::As) +fun rhyps (\<^Const_>\Pure.imp for \<^Const_>\Trueprop for A\ phi\, As) = rhyps(phi, A::As) | rhyps (_, As) = As; (** Detecting repeated assumptions in a subgoal **) @@ -514,7 +514,7 @@ val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD, not_impD, not_iffD, not_allD, not_exD, not_notD]; -fun ok4nnf \<^Const_>\Trueprop for \\<^Const_>\Not for t\\\ = rigid t +fun ok4nnf \<^Const_>\Trueprop for \<^Const_>\Not for t\\ = rigid t | ok4nnf \<^Const_>\Trueprop for t\ = rigid t | ok4nnf _ = false; @@ -620,7 +620,7 @@ (* Strengthens "f g ~= f h" to "f g ~= f h & (EX x. g x ~= h x)". *) fun cong_extensionalize_thm ctxt th = (case Thm.concl_of th of - \<^Const_>\Trueprop for \\<^Const_>\Not for \\<^Const_>\HOL.eq T for \t as _ $ _\ \u as _ $ _\\\\\\ => + \<^Const_>\Trueprop for \<^Const_>\Not for \<^Const_>\HOL.eq T for \t as _ $ _\ \u as _ $ _\\\\ => (case get_F_pattern T t u of SOME p => th RS infer_instantiate ctxt [(("F", 0), Thm.cterm_of ctxt p)] ext_cong_neq | NONE => th) diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/Transitive_Closure.thy --- a/src/HOL/Transitive_Closure.thy Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/Transitive_Closure.thy Tue Sep 28 17:09:05 2021 +0200 @@ -1289,7 +1289,7 @@ fun decomp \<^Const_>\Trueprop for t\ = let - fun dec \<^Const_>\Set.member _ for \\<^Const_>\Pair _ _ for a b\\ rel\ = + fun dec \<^Const_>\Set.member _ for \<^Const_>\Pair _ _ for a b\ rel\ = let fun decr \<^Const_>\rtrancl _ for r\ = (r,"r*") | decr \<^Const_>\trancl _ for r\ = (r,"r+") diff -r e585e5a906ba -r ba880f3a4e52 src/HOL/Typerep.thy --- a/src/HOL/Typerep.thy Tue Sep 28 17:08:38 2021 +0200 +++ b/src/HOL/Typerep.thy Tue Sep 28 17:09:05 2021 +0200 @@ -32,7 +32,7 @@ typed_print_translation \ let - fun typerep_tr' ctxt (*"typerep"*) \<^Type>\fun \\<^Type>\itself T\\ _\ + fun typerep_tr' ctxt (*"typerep"*) \<^Type>\fun \<^Type>\itself T\ _\ (Const (\<^const_syntax>\Pure.type\, _) :: ts) = Term.list_comb (Syntax.const \<^syntax_const>\_TYPEREP\ $ Syntax_Phases.term_of_typ ctxt T, ts) diff -r e585e5a906ba -r ba880f3a4e52 src/ZF/Tools/inductive_package.ML --- a/src/ZF/Tools/inductive_package.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/ZF/Tools/inductive_package.ML Tue Sep 28 17:09:05 2021 +0200 @@ -298,7 +298,7 @@ (*Used to make induction rules; ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops prem is a premise of an intr rule*) - fun add_induct_prem ind_alist (prem as \<^Const_>\Trueprop for \\<^Const_>\mem for t X\\\, iprems) = + fun add_induct_prem ind_alist (prem as \<^Const_>\Trueprop for \<^Const_>\mem for t X\\, iprems) = (case AList.lookup (op aconv) ind_alist X of SOME pred => prem :: \<^make_judgment> (pred $ t) :: iprems | NONE => (*possibly membership in M(rec_tm), for M monotone*) @@ -391,7 +391,7 @@ elem_factors ---> \<^Type>\o\) val qconcl = fold_rev (FOLogic.mk_all o Term.dest_Free) elem_frees - \<^Const>\imp for \\<^Const>\mem for elem_tuple rec_tm\\ \list_comb (pfree, elem_frees)\\ + \<^Const>\imp for \<^Const>\mem for elem_tuple rec_tm\ \list_comb (pfree, elem_frees)\\ in (CP.ap_split elem_type \<^Type>\o\ pfree, qconcl) end; @@ -400,7 +400,7 @@ (*Used to form simultaneous induction lemma*) fun mk_rec_imp (rec_tm,pred) = - \<^Const>\imp for \\<^Const>\mem for \Bound 0\ rec_tm\\ \pred $ Bound 0\\; + \<^Const>\imp for \<^Const>\mem for \Bound 0\ rec_tm\ \pred $ Bound 0\\; (*To instantiate the main induction rule*) val induct_concl = diff -r e585e5a906ba -r ba880f3a4e52 src/ZF/Tools/typechk.ML --- a/src/ZF/Tools/typechk.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/ZF/Tools/typechk.ML Tue Sep 28 17:09:05 2021 +0200 @@ -76,7 +76,7 @@ if length rls <= maxr then resolve_tac ctxt rls i else no_tac end); -fun is_rigid_elem \<^Const_>\Trueprop for \\<^Const_>\mem for a _\\\ = not (is_Var (head_of a)) +fun is_rigid_elem \<^Const_>\Trueprop for \<^Const_>\mem for a _\\ = not (is_Var (head_of a)) | is_rigid_elem _ = false; (*Try solving a:A by assumption provided a is rigid!*) diff -r e585e5a906ba -r ba880f3a4e52 src/ZF/arith_data.ML --- a/src/ZF/arith_data.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/ZF/arith_data.ML Tue Sep 28 17:09:05 2021 +0200 @@ -48,7 +48,7 @@ (*Use <-> or = depending on the type of t*) fun mk_eq_iff(t,u) = if fastype_of t = \<^Type>\i\ - then \<^Const>\IFOL.eq \\<^Type>\i\\ for t u\ + then \<^Const>\IFOL.eq \<^Type>\i\ for t u\ else \<^Const>\IFOL.iff for t u\; (*We remove equality assumptions because they confuse the simplifier and diff -r e585e5a906ba -r ba880f3a4e52 src/ZF/ind_syntax.ML --- a/src/ZF/ind_syntax.ML Tue Sep 28 17:08:38 2021 +0200 +++ b/src/ZF/ind_syntax.ML Tue Sep 28 17:09:05 2021 +0200 @@ -22,7 +22,7 @@ fun mk_all_imp (A,P) = let val T = \<^Type>\i\ in \<^Const>\All T for - \Abs ("v", T, \<^Const>\imp for \\<^Const>\mem for \Bound 0\ A\\ \Term.betapply (P, Bound 0)\\)\\ + \Abs ("v", T, \<^Const>\imp for \<^Const>\mem for \Bound 0\ A\ \Term.betapply (P, Bound 0)\\)\\ end; fun mk_Collect (a, D, t) = \<^Const>\Collect for D\ $ absfree (a, \<^Type>\i\) t; @@ -37,7 +37,7 @@ (*Return the conclusion of a rule, of the form t:X*) fun rule_concl rl = - let val \<^Const_>\Trueprop for \\<^Const_>\mem for t X\\\ = Logic.strip_imp_concl rl + let val \<^Const_>\Trueprop for \<^Const_>\mem for t X\\ = Logic.strip_imp_concl rl in (t,X) end; (*As above, but return error message if bad*)