# HG changeset patch # User wenzelm # Date 1474225584 -7200 # Node ID 5e816da75b8f87731ba40c18fc5cf1eb3f49192c # Parent 255294779d401332a9ee55df0c09d1a4692a82e7# Parent bab633745c7fd4dbf6eafc66a3d886f5c1618735 merged diff -r bab633745c7f -r 5e816da75b8f src/HOL/Num.thy --- a/src/HOL/Num.thy Sun Sep 18 20:33:48 2016 +0200 +++ b/src/HOL/Num.thy Sun Sep 18 21:06:24 2016 +0200 @@ -994,6 +994,8 @@ lemma numerals: "Numeral1 = (1::nat)" "2 = Suc (Suc 0)" by (rule numeral_One) (rule numeral_2_eq_2) +lemmas numeral_nat = eval_nat_numeral BitM.simps One_nat_def + text \Comparisons involving @{term Suc}.\ lemma eq_numeral_Suc [simp]: "numeral k = Suc n \ pred_numeral k = n" diff -r bab633745c7f -r 5e816da75b8f src/HOL/ex/Primrec.thy --- a/src/HOL/ex/Primrec.thy Sun Sep 18 20:33:48 2016 +0200 +++ b/src/HOL/ex/Primrec.thy Sun Sep 18 21:06:24 2016 +0200 @@ -129,7 +129,7 @@ text \PROPERTY A 10\ lemma ack_nest_bound: "ack i1 (ack i2 j) < ack (2 + (i1 + i2)) j" -apply (simp add: numerals) +apply simp apply (rule ack2_le_ack1 [THEN [2] less_le_trans]) apply simp apply (rule le_add1 [THEN ack_le_mono1, THEN le_less_trans])