# HG changeset patch # User paulson # Date 1136973626 -3600 # Node ID bb99c2e705ca6a9058fa99e4199568b1f71ab944 # Parent 22f96cd085d51e9641d0899c4bbb420cda9e7fd8 tidied, and added missing thm divide_less_eq_1_neg diff -r 22f96cd085d5 -r bb99c2e705ca src/HOL/Ring_and_Field.thy --- a/src/HOL/Ring_and_Field.thy Wed Jan 11 10:59:55 2006 +0100 +++ b/src/HOL/Ring_and_Field.thy Wed Jan 11 11:00:26 2006 +0100 @@ -1647,47 +1647,52 @@ lemma le_divide_eq_1_pos [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "0 < a \ (1 \ b / a) = (a \ b)" + shows "0 < a \ (1 \ b/a) = (a \ b)" by (auto simp add: le_divide_eq) lemma le_divide_eq_1_neg [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "a < 0 \ (1 \ b / a) = (b \ a)" + shows "a < 0 \ (1 \ b/a) = (b \ a)" by (auto simp add: le_divide_eq) lemma divide_le_eq_1_pos [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "0 < a \ (b / a \ 1) = (b \ a)" + shows "0 < a \ (b/a \ 1) = (b \ a)" by (auto simp add: divide_le_eq) lemma divide_le_eq_1_neg [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "a < 0 \ (b / a \ 1) = (a \ b)" + shows "a < 0 \ (b/a \ 1) = (a \ b)" by (auto simp add: divide_le_eq) lemma less_divide_eq_1_pos [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "0 < a \ (1 < b / a) = (a < b)" + shows "0 < a \ (1 < b/a) = (a < b)" by (auto simp add: less_divide_eq) lemma less_divide_eq_1_neg [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "a < 0 \ (1 < b / a) = (b < a)" + shows "a < 0 \ (1 < b/a) = (b < a)" by (auto simp add: less_divide_eq) lemma divide_less_eq_1_pos [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "0 < a \ (b / a < 1) = (b < a)" + shows "0 < a \ (b/a < 1) = (b < a)" +by (auto simp add: divide_less_eq) + +lemma divide_less_eq_1_neg [simp]: + fixes a :: "'a :: {ordered_field,division_by_zero}" + shows "a < 0 \ b/a < 1 <-> a < b" by (auto simp add: divide_less_eq) lemma eq_divide_eq_1 [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "(1 = b / a) = ((a \ 0 & a = b))" + shows "(1 = b/a) = ((a \ 0 & a = b))" by (auto simp add: eq_divide_eq) lemma divide_eq_eq_1 [simp]: fixes a :: "'a :: {ordered_field,division_by_zero}" - shows "(b / a = 1) = ((a \ 0 & a = b))" + shows "(b/a = 1) = ((a \ 0 & a = b))" by (auto simp add: divide_eq_eq) subsection {* Reasoning about inequalities with division *}