# HG changeset patch # User paulson # Date 1505835439 -3600 # Node ID bc3584f7ac0c2e590376998eddb496214f860614 # Parent d5bf4bdb4fb7231368e589e631dbc36c14fcee00 Using the "constant_on" operator diff -r d5bf4bdb4fb7 -r bc3584f7ac0c src/HOL/Analysis/Conformal_Mappings.thy --- a/src/HOL/Analysis/Conformal_Mappings.thy Sun Sep 17 21:04:02 2017 +0200 +++ b/src/HOL/Analysis/Conformal_Mappings.thy Tue Sep 19 16:37:19 2017 +0100 @@ -739,7 +739,7 @@ lemma holomorphic_factor_zero_nonconstant: assumes holf: "f holomorphic_on S" and S: "open S" "connected S" and "\ \ S" "f \ = 0" - and nonconst: "\c. \z \ S. f z \ c" + and nonconst: "~ f constant_on S" obtains g r n where "0 < n" "0 < r" "ball \ r \ S" "g holomorphic_on ball \ r" @@ -747,7 +747,7 @@ "\w. w \ ball \ r \ g w \ 0" proof (cases "\n>0. (deriv ^^ n) f \ = 0") case True then show ?thesis - using holomorphic_fun_eq_const_on_connected [OF holf S _ \\ \ S\] nonconst by auto + using holomorphic_fun_eq_const_on_connected [OF holf S _ \\ \ S\] nonconst by (simp add: constant_on_def) next case False then obtain n0 where "n0 > 0" and n0: "(deriv ^^ n0) f \ \ 0" by blast @@ -3074,18 +3074,19 @@ lemma holomorphic_factor_zero_Ex1: assumes "open s" "connected s" "z \ s" and - holo:"f holomorphic_on s" - and "f z = 0" and "\w\s. f w \ 0" + holf: "f holomorphic_on s" + and f: "f z = 0" "\w\s. f w \ 0" shows "\!n. \g r. 0 < n \ 0 < r \ g holomorphic_on cball z r \ (\w\cball z r. f w = (w-z)^n * g w \ g w\0)" proof (rule ex_ex1I) - obtain g r n where "0 < n" "0 < r" "ball z r \ s" and + have "\ f constant_on s" + by (metis \z\s\ constant_on_def f) + then obtain g r n where "0 < n" "0 < r" "ball z r \ s" and g:"g holomorphic_on ball z r" "\w. w \ ball z r \ f w = (w - z) ^ n * g w" "\w. w \ ball z r \ g w \ 0" - using holomorphic_factor_zero_nonconstant[OF holo \open s\ \connected s\ \z\s\ \f z=0\] - by (metis assms(3) assms(5) assms(6)) + by (blast intro: holomorphic_factor_zero_nonconstant[OF holf \open s\ \connected s\ \z\s\ \f z=0\]) define r' where "r' \ r/2" have "cball z r' \ ball z r" unfolding r'_def by (simp add: \0 < r\ cball_subset_ball_iff) hence "cball z r' \ s" "g holomorphic_on cball z r'" diff -r d5bf4bdb4fb7 -r bc3584f7ac0c src/HOL/Analysis/Great_Picard.thy --- a/src/HOL/Analysis/Great_Picard.thy Sun Sep 17 21:04:02 2017 +0200 +++ b/src/HOL/Analysis/Great_Picard.thy Tue Sep 19 16:37:19 2017 +0100 @@ -1000,7 +1000,7 @@ and holf: "\n::nat. \ n holomorphic_on S" and holg: "g holomorphic_on S" and ul_g: "\K. \compact K; K \ S\ \ uniform_limit K \ g sequentially" - and nonconst: "\c. \z \ S. g z \ c" + and nonconst: "~ g constant_on S" and nz: "\n z. z \ S \ \ n z \ 0" and "z0 \ S" shows "g z0 \ 0" @@ -1164,14 +1164,14 @@ and holf: "\n::nat. \ n holomorphic_on S" and holg: "g holomorphic_on S" and ul_g: "\K. \compact K; K \ S\ \ uniform_limit K \ g sequentially" - and nonconst: "\c. \z \ S. g z \ c" + and nonconst: "~ g constant_on S" and inj: "\n. inj_on (\ n) S" shows "inj_on g S" proof - have False if z12: "z1 \ S" "z2 \ S" "z1 \ z2" "g z2 = g z1" for z1 z2 proof - obtain z0 where "z0 \ S" and z0: "g z0 \ g z2" - using nonconst by blast + using constant_on_def nonconst by blast have "(\z. g z - g z1) holomorphic_on S" by (intro holomorphic_intros holg) then obtain r where "0 < r" "ball z2 r \ S" "\z. dist z2 z < r \ z \ z2 \ g z \ g z1" @@ -1214,7 +1214,8 @@ show "\\<^sub>F n in sequentially. \x\K. dist (\ n x - \ n z1) (g x - g z1) < e" by simp qed - show "\c. \z\S - {z1}. g z - g z1 \ c" + show "\ (\z. g z - g z1) constant_on S - {z1}" + unfolding constant_on_def by (metis Diff_iff \z0 \ S\ empty_iff insert_iff right_minus_eq z0 z12) show "\n z. z \ S - {z1} \ \ n z - \ n z1 \ 0" by (metis DiffD1 DiffD2 eq_iff_diff_eq_0 inj inj_onD insertI1 \z1 \ S\) @@ -1360,8 +1361,9 @@ using \Z \ S\ e hol\ by force show "\n z. z \ ball v e \ (\ \ j) n z \ 0" using \not0 \Z \ S\ e by fastforce - show "\z\ball v e. h z \ c" for c - proof - + show "\ h constant_on ball v e" + proof (clarsimp simp: constant_on_def) + fix c have False if "\z. dist v z < e \ h z = c" proof - have "h v = c" @@ -1389,7 +1391,7 @@ show False using \C < cmod (\ (j n) y)\ le_C not_less by blast qed - then show ?thesis by force + then show "\x\ball v e. h x \ c" by force qed show "h holomorphic_on ball v e" by (simp add: holh) @@ -1828,7 +1830,6 @@ by meson qed - corollary Casorati_Weierstrass: assumes "open M" "z \ M" "f holomorphic_on (M - {z})" and "\l. \ (f \ l) (at z)" "\l. \ ((inverse \ f) \ l) (at z)"