# HG changeset patch # User webertj # Date 1053095736 -7200 # Node ID bc723de8ec958250422b7c2969ab8d2443cabeb0 # Parent a6239314e38057aa68ffad83cdb143c4fb707a17 Added a few lemmas about map_le diff -r a6239314e380 -r bc723de8ec95 src/HOL/Map.thy --- a/src/HOL/Map.thy Thu May 15 11:22:54 2003 +0200 +++ b/src/HOL/Map.thy Fri May 16 16:35:36 2003 +0200 @@ -370,4 +370,29 @@ apply auto done +lemma map_le_implies_dom_le: "(f \\<^sub>m g) \ (dom f \ dom g)" + by (fastsimp simp add: map_le_def dom_def) + +lemma map_le_refl [simp]: "f \\<^sub>m f" + by (simp add: map_le_def) + +lemma map_le_trans: "\ f \\<^sub>m g; g \\<^sub>m h \ \ f \\<^sub>m h" + apply (clarsimp simp add: map_le_def) + apply (drule_tac x="a" in bspec, fastsimp)+ + apply assumption +done + +lemma map_le_antisym: "\ f \\<^sub>m g; g \\<^sub>m f \ \ f = g" + apply (unfold map_le_def) + apply (rule ext) + apply (case_tac "x \ dom f") + apply simp + apply (case_tac "x \ dom g") + apply simp + apply fastsimp +done + +lemma map_le_map_add [simp]: "f \\<^sub>m (g ++ f)" + by (fastsimp simp add: map_le_def) + end