# HG changeset patch # User wenzelm # Date 1331982011 -3600 # Node ID bd955d9f464b3c4961c216ba6a7db5ede95615b7 # Parent 0f1e85fcf5f4eedec26192b02335297d5480fd76 tuned proofs; diff -r 0f1e85fcf5f4 -r bd955d9f464b src/HOL/Matrix/ComputeNumeral.thy --- a/src/HOL/Matrix/ComputeNumeral.thy Sat Mar 17 11:59:59 2012 +0100 +++ b/src/HOL/Matrix/ComputeNumeral.thy Sat Mar 17 12:00:11 2012 +0100 @@ -50,7 +50,7 @@ (* multiplication for bit strings *) lemma mult_Pls_right: "x * Int.Pls = Int.Pls" by (simp add: Pls_def) -lemma mult_Min_right: "x * Int.Min = - x" by (subst mult_commute, simp add: mult_Min) +lemma mult_Min_right: "x * Int.Min = - x" by (subst mult_commute) simp lemma multb0x: "(Int.Bit0 x) * y = Int.Bit0 (x * y)" by (rule mult_Bit0) lemma multxb0: "x * (Int.Bit0 y) = Int.Bit0 (x * y)" unfolding Bit0_def by simp lemma multb1: "(Int.Bit1 x) * (Int.Bit1 y) = Int.Bit1 (Int.Bit0 (x * y) + x + y)" diff -r 0f1e85fcf5f4 -r bd955d9f464b src/HOL/Matrix/Matrix.thy --- a/src/HOL/Matrix/Matrix.thy Sat Mar 17 11:59:59 2012 +0100 +++ b/src/HOL/Matrix/Matrix.thy Sat Mar 17 12:00:11 2012 +0100 @@ -64,7 +64,7 @@ lemma transpose_infmatrix: "transpose_infmatrix (% j i. P j i) = (% j i. P i j)" apply (rule ext)+ - by (simp add: transpose_infmatrix_def) + by simp lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)" apply (rule Abs_matrix_inverse) @@ -836,7 +836,7 @@ by (simp add: zero_matrix_def) lemma transpose_matrix_zero[simp]: "transpose_matrix 0 = 0" -apply (simp add: transpose_matrix_def transpose_infmatrix_def zero_matrix_def RepAbs_matrix) +apply (simp add: transpose_matrix_def zero_matrix_def RepAbs_matrix) apply (subst Rep_matrix_inject[symmetric], (rule ext)+) apply (simp add: RepAbs_matrix) done @@ -1464,7 +1464,7 @@ definition "sup = combine_matrix sup" instance - by default (auto simp add: inf_le1 inf_le2 le_infI le_matrix_def inf_matrix_def sup_matrix_def) + by default (auto simp add: le_infI le_matrix_def inf_matrix_def sup_matrix_def) end