# HG changeset patch # User haftmann # Date 1174375642 -3600 # Node ID be9ae8b19271d2356e2e257572f356b41179781f # Parent 088e141084a680d38fb787cbdd8330168a228728 new lemmas diff -r 088e141084a6 -r be9ae8b19271 src/HOL/FixedPoint.thy --- a/src/HOL/FixedPoint.thy Tue Mar 20 08:27:21 2007 +0100 +++ b/src/HOL/FixedPoint.thy Tue Mar 20 08:27:22 2007 +0100 @@ -125,6 +125,28 @@ lemma top_greatest[simp]: "(x::'a::complete_lattice) \ Inf{}" by (rule Inf_greatest) simp +lemma inf_Inf_empty: + "inf a (Inf {}) = a" +proof - + have "a \ Inf {}" by (rule top_greatest) + then show ?thesis by (rule inf_absorb1) +qed + +lemma inf_binary: + "Inf {a, b} = inf a b" +unfolding Inf_insert inf_Inf_empty .. + +lemma sup_Sup_empty: + "sup a (Sup {}) = a" +proof - + have "Sup {} \ a" by (rule bot_least) + then show ?thesis by (rule sup_absorb1) +qed + +lemma sup_binary: + "Sup {a, b} = sup a b" +unfolding Sup_insert sup_Sup_empty .. + lemma SUP_const[simp]: "A \ {} \ (SUP i:A. M) = M" by (auto intro: order_antisym SUP_leI le_SUPI)