# HG changeset patch # User wenzelm # Date 1395262771 -3600 # Node ID bf80d125406b3078f8b66c8f9d0ae7dd50d4c695 # Parent 1c3f1f2431f909084b6569c92e79b82ecd61f9cd tuned proofs; diff -r 1c3f1f2431f9 -r bf80d125406b src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Wed Mar 19 18:47:22 2014 +0100 +++ b/src/HOL/Deriv.thy Wed Mar 19 21:59:31 2014 +0100 @@ -73,9 +73,9 @@ "(g has_derivative g') F \ ((\x. f (g x)) has_derivative (\x. f (g' x))) F" using assms unfolding has_derivative_def apply safe - apply (erule bounded_linear_compose [OF local.bounded_linear]) - apply (drule local.tendsto) - apply (simp add: local.scaleR local.diff local.add local.zero) + apply (erule bounded_linear_compose [OF bounded_linear]) + apply (drule tendsto) + apply (simp add: scaleR diff add zero) done lemmas has_derivative_scaleR_right [has_derivative_intros] = @@ -1355,7 +1355,7 @@ hence 1: "(\z. (f z - x) / (z - g x)) -- g x --> D" using inj a b by simp have 2: "\d>0. \y. y \ x \ norm (y - x) < d \ g y \ g x" - proof (safe intro!: exI) + proof (rule exI, safe) show "0 < min (x - a) (b - x)" using a b by simp next @@ -1492,7 +1492,7 @@ and g'_neq_0: "\x. 0 < x \ x < a \ g' x \ 0" and f0: "\x. 0 < x \ x < a \ DERIV f0 x :> (f' x)" and g0: "\x. 0 < x \ x < a \ DERIV g0 x :> (g' x)" - unfolding eventually_at eventually_at by (auto simp: dist_real_def) + unfolding eventually_at by (auto simp: dist_real_def) have g_neq_0: "\x. 0 < x \ x < a \ g x \ 0" using g0_neq_0 by (simp add: g_def)