# HG changeset patch # User huffman # Date 1269323726 25200 # Node ID bfa52a972745326a1dadf833467fa4bcf31260eb # Parent cd1b0166481037bc96c4ef630aa17bbba2c12386 define csplit using fst, snd diff -r cd1b01664810 -r bfa52a972745 src/HOLCF/Cprod.thy --- a/src/HOLCF/Cprod.thy Mon Mar 22 22:43:21 2010 -0700 +++ b/src/HOLCF/Cprod.thy Mon Mar 22 22:55:26 2010 -0700 @@ -34,11 +34,11 @@ definition csnd :: "('a * 'b) \ 'b" where - "csnd = (\ p. snd p)" + "csnd = (\ p. snd p)" definition csplit :: "('a \ 'b \ 'c) \ ('a * 'b) \ 'c" where - "csplit = (\ f p. f\(cfst\p)\(csnd\p))" + "csplit = (\ f p. f\(fst p)\(snd p))" syntax "_ctuple" :: "['a, args] \ 'a * 'b" ("(1<_,/ _>)") @@ -146,13 +146,13 @@ by (simp add: csplit_def) lemma csplit2 [simp]: "csplit\f\ = f\x\y" -by (simp add: csplit_def) +by (simp add: csplit_def cpair_def) lemma csplit3 [simp]: "csplit\cpair\z = z" -by (simp add: csplit_def cpair_cfst_csnd) +by (simp add: csplit_def cpair_def) lemma csplit_Pair [simp]: "csplit\f\(x, y) = f\x\y" -by (simp add: csplit_def cfst_def csnd_def) +by (simp add: csplit_def) lemmas Cprod_rews = cfst_cpair csnd_cpair csplit2