# HG changeset patch # User wenzelm # Date 1320584964 -3600 # Node ID c0704e988526e2e52113b892e9c6292300d10368 # Parent a2157057024c577c5f2892c588d93050e89269b6 misc tuning and modernization; diff -r a2157057024c -r c0704e988526 src/HOL/Statespace/DistinctTreeProver.thy --- a/src/HOL/Statespace/DistinctTreeProver.thy Sun Nov 06 13:25:41 2011 +0100 +++ b/src/HOL/Statespace/DistinctTreeProver.thy Sun Nov 06 14:09:24 2011 +0100 @@ -51,8 +51,7 @@ certificate that the content of the nodes is distinct. We use the following lemmas to achieve this. *} -lemma all_distinct_left: -"all_distinct (Node l x b r) \ all_distinct l" +lemma all_distinct_left: "all_distinct (Node l x b r) \ all_distinct l" by simp lemma all_distinct_right: "all_distinct (Node l x b r) \ all_distinct r" @@ -164,8 +163,8 @@ qed qed -lemma delete_Some_all_distinct: -"\t'. \delete x t = Some t'; all_distinct t\ \ all_distinct t'" +lemma delete_Some_all_distinct: + "\t'. \delete x t = Some t'; all_distinct t\ \ all_distinct t'" proof (induct t) case Tip thus ?case by simp next diff -r a2157057024c -r c0704e988526 src/HOL/Statespace/distinct_tree_prover.ML --- a/src/HOL/Statespace/distinct_tree_prover.ML Sun Nov 06 13:25:41 2011 +0100 +++ b/src/HOL/Statespace/distinct_tree_prover.ML Sun Nov 06 14:09:24 2011 +0100 @@ -4,20 +4,20 @@ signature DISTINCT_TREE_PROVER = sig - datatype Direction = Left | Right + datatype direction = Left | Right val mk_tree : ('a -> term) -> typ -> 'a list -> term val dest_tree : term -> term list - val find_tree : term -> term -> Direction list option + val find_tree : term -> term -> direction list option val neq_to_eq_False : thm - val distinctTreeProver : thm -> Direction list -> Direction list -> thm - val neq_x_y : Proof.context -> term -> term -> string -> thm option + val distinctTreeProver : thm -> direction list -> direction list -> thm + val neq_x_y : Proof.context -> term -> term -> string -> thm option val distinctFieldSolver : string list -> solver val distinctTree_tac : string list -> Proof.context -> int -> tactic val distinct_implProver : thm -> cterm -> thm val subtractProver : term -> cterm -> thm -> thm val distinct_simproc : string list -> simproc - + val discharge : thm list -> thm -> thm end; @@ -37,68 +37,70 @@ val swap_neq = @{thm DistinctTreeProver.swap_neq}; val neq_to_eq_False = @{thm DistinctTreeProver.neq_to_eq_False}; -datatype Direction = Left | Right +datatype direction = Left | Right; -fun treeT T = Type ("DistinctTreeProver.tree",[T]); -fun mk_tree' e T n [] = Const ("DistinctTreeProver.tree.Tip",treeT T) +fun treeT T = Type (@{type_name tree}, [T]); +fun mk_tree' e T n [] = Const (@{const_name Tip}, treeT T) | mk_tree' e T n xs = let val m = (n - 1) div 2; val (xsl,x::xsr) = chop m xs; val l = mk_tree' e T m xsl; val r = mk_tree' e T (n-(m+1)) xsr; - in Const ("DistinctTreeProver.tree.Node", - treeT T --> T --> HOLogic.boolT--> treeT T --> treeT T) $ - l$ e x $ HOLogic.false_const $ r + in + Const (@{const_name Node}, treeT T --> T --> HOLogic.boolT--> treeT T --> treeT T) $ + l $ e x $ HOLogic.false_const $ r end -fun mk_tree e T xs = mk_tree' e T (length xs) xs; +fun mk_tree e T xs = mk_tree' e T (length xs) xs; -fun dest_tree (Const ("DistinctTreeProver.tree.Tip",_)) = [] - | dest_tree (Const ("DistinctTreeProver.tree.Node",_)$l$e$_$r) = dest_tree l @ e :: dest_tree r - | dest_tree t = raise TERM ("DistinctTreeProver.dest_tree",[t]); +fun dest_tree (Const (@{const_name Tip}, _)) = [] + | dest_tree (Const (@{const_name Node}, _) $ l $ e $ _ $ r) = dest_tree l @ e :: dest_tree r + | dest_tree t = raise TERM ("dest_tree", [t]); -fun lin_find_tree e (Const ("DistinctTreeProver.tree.Tip",_)) = NONE - | lin_find_tree e (Const ("DistinctTreeProver.tree.Node",_) $ l$ x $ _ $ r) = - if e aconv x +fun lin_find_tree e (Const (@{const_name Tip}, _)) = NONE + | lin_find_tree e (Const (@{const_name Node}, _) $ l $ x $ _ $ r) = + if e aconv x then SOME [] - else (case lin_find_tree e l of - SOME path => SOME (Left::path) - | NONE => (case lin_find_tree e r of - SOME path => SOME (Right::path) - | NONE => NONE)) - | lin_find_tree e t = raise TERM ("find_tree: input not a tree",[t]) + else + (case lin_find_tree e l of + SOME path => SOME (Left :: path) + | NONE => + (case lin_find_tree e r of + SOME path => SOME (Right :: path) + | NONE => NONE)) + | lin_find_tree e t = raise TERM ("find_tree: input not a tree", [t]) -fun bin_find_tree order e (Const ("DistinctTreeProver.tree.Tip",_)) = NONE - | bin_find_tree order e (Const ("DistinctTreeProver.tree.Node",_) $ l$ x $ _ $ r) = - (case order (e,x) of - EQUAL => SOME [] - | LESS => Option.map (cons Left) (bin_find_tree order e l) - | GREATER => Option.map (cons Right) (bin_find_tree order e r)) - | bin_find_tree order e t = raise TERM ("find_tree: input not a tree",[t]) +fun bin_find_tree order e (Const (@{const_name Tip}, _)) = NONE + | bin_find_tree order e (Const (@{const_name Node}, _) $ l $ x $ _ $ r) = + (case order (e, x) of + EQUAL => SOME [] + | LESS => Option.map (cons Left) (bin_find_tree order e l) + | GREATER => Option.map (cons Right) (bin_find_tree order e r)) + | bin_find_tree order e t = raise TERM ("find_tree: input not a tree", [t]) fun find_tree e t = (case bin_find_tree Term_Ord.fast_term_ord e t of - NONE => lin_find_tree e t - | x => x); + NONE => lin_find_tree e t + | x => x); + - -fun index_tree (Const ("DistinctTreeProver.tree.Tip",_)) path tab = tab - | index_tree (Const ("DistinctTreeProver.tree.Node",_) $ l$ x $ _ $ r) path tab = - tab - |> Termtab.update_new (x,path) - |> index_tree l (path@[Left]) - |> index_tree r (path@[Right]) - | index_tree t _ _ = raise TERM ("index_tree: input not a tree",[t]) +fun index_tree (Const (@{const_name Tip}, _)) path tab = tab + | index_tree (Const (@{const_name Node}, _) $ l $ x $ _ $ r) path tab = + tab + |> Termtab.update_new (x, path) + |> index_tree l (path @ [Left]) + |> index_tree r (path @ [Right]) + | index_tree t _ _ = raise TERM ("index_tree: input not a tree", [t]) -fun split_common_prefix xs [] = ([],xs,[]) - | split_common_prefix [] ys = ([],[],ys) - | split_common_prefix (xs as (x::xs')) (ys as (y::ys')) = - if x=y - then let val (ps,xs'',ys'') = split_common_prefix xs' ys' in (x::ps,xs'',ys'') end - else ([],xs,ys) +fun split_common_prefix xs [] = ([], xs, []) + | split_common_prefix [] ys = ([], [], ys) + | split_common_prefix (xs as (x :: xs')) (ys as (y :: ys')) = + if x = y + then let val (ps, xs'', ys'') = split_common_prefix xs' ys' in (x :: ps, xs'', ys'') end + else ([], xs, ys) (* Wrapper around Thm.instantiate. The type instiations of instTs are applied to @@ -106,14 +108,14 @@ *) fun instantiate instTs insts = let - val instTs' = map (fn (T,U) => (dest_TVar (typ_of T),typ_of U)) instTs; + val instTs' = map (fn (T, U) => (dest_TVar (typ_of T), typ_of U)) instTs; fun substT x = (case AList.lookup (op =) instTs' x of NONE => TVar x | SOME T' => T'); fun mapT_and_recertify ct = let val thy = theory_of_cterm ct; in (cterm_of thy (Term.map_types (Term.map_type_tvar substT) (term_of ct))) end; val insts' = map (apfst mapT_and_recertify) insts; - in Thm.instantiate (instTs,insts') end; + in Thm.instantiate (instTs, insts') end; fun tvar_clash ixn S S' = raise TYPE ("Type variable " ^ quote (Term.string_of_vname ixn) ^ " has two distinct sorts", @@ -141,62 +143,69 @@ in match end; -(* expects that relevant type variables are already contained in +(* expects that relevant type variables are already contained in * term variables. First instantiation of variables is returned without further * checking. *) -fun naive_cterm_first_order_match (t,ct) env = +fun naive_cterm_first_order_match (t, ct) env = let - val thy = (theory_of_cterm ct); - fun mtch (env as (tyinsts,insts)) = fn - (Var(ixn,T),ct) => - (case AList.lookup (op =) insts ixn of - NONE => (naive_typ_match (T,typ_of (ctyp_of_term ct)) tyinsts, - (ixn, ct)::insts) - | SOME _ => env) - | (f$t,ct) => let val (cf,ct') = Thm.dest_comb ct; - in mtch (mtch env (f,cf)) (t,ct') end - | _ => env - in mtch env (t,ct) end; + val thy = theory_of_cterm ct; + fun mtch (env as (tyinsts, insts)) = + fn (Var (ixn, T), ct) => + (case AList.lookup (op =) insts ixn of + NONE => (naive_typ_match (T, typ_of (ctyp_of_term ct)) tyinsts, (ixn, ct) :: insts) + | SOME _ => env) + | (f $ t, ct) => + let val (cf, ct') = Thm.dest_comb ct; + in mtch (mtch env (f, cf)) (t, ct') end + | _ => env; + in mtch env (t, ct) end; fun discharge prems rule = let - val thy = theory_of_thm (hd prems); - val (tyinsts,insts) = - fold naive_cterm_first_order_match (prems_of rule ~~ map cprop_of prems) ([],[]); + val thy = theory_of_thm (hd prems); + val (tyinsts,insts) = + fold naive_cterm_first_order_match (prems_of rule ~~ map cprop_of prems) ([], []); - val tyinsts' = map (fn (v,(S,U)) => (ctyp_of thy (TVar (v,S)),ctyp_of thy U)) - tyinsts; - val insts' = map (fn (idxn,ct) => (cterm_of thy (Var (idxn,typ_of (ctyp_of_term ct))),ct)) - insts; - val rule' = Thm.instantiate (tyinsts',insts') rule; - in fold Thm.elim_implies prems rule' end; + val tyinsts' = + map (fn (v, (S, U)) => (ctyp_of thy (TVar (v, S)), ctyp_of thy U)) tyinsts; + val insts' = + map (fn (idxn, ct) => (cterm_of thy (Var (idxn, typ_of (ctyp_of_term ct))), ct)) insts; + val rule' = Thm.instantiate (tyinsts', insts') rule; + in fold Thm.elim_implies prems rule' end; local -val (l_in_set_root,x_in_set_root,r_in_set_root) = - let val (Node_l_x_d,r) = (cprop_of in_set_root) - |> Thm.dest_comb |> #2 - |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 |> Thm.dest_comb; - val (Node_l,x) = Node_l_x_d |> Thm.dest_comb |> #1 |> Thm.dest_comb; - val l = Node_l |> Thm.dest_comb |> #2; - in (l,x,r) end -val (x_in_set_left,r_in_set_left) = - let val (Node_l_x_d,r) = (cprop_of in_set_left) - |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 - |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 |> Thm.dest_comb; - val x = Node_l_x_d |> Thm.dest_comb |> #1 |> Thm.dest_comb |> #2; - in (x,r) end +val (l_in_set_root, x_in_set_root, r_in_set_root) = + let + val (Node_l_x_d, r) = + cprop_of in_set_root + |> Thm.dest_comb |> #2 + |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 |> Thm.dest_comb; + val (Node_l, x) = Node_l_x_d |> Thm.dest_comb |> #1 |> Thm.dest_comb; + val l = Node_l |> Thm.dest_comb |> #2; + in (l,x,r) end; -val (x_in_set_right,l_in_set_right) = - let val (Node_l,x) = (cprop_of in_set_right) - |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 - |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 - |> Thm.dest_comb |> #1 |> Thm.dest_comb |> #1 - |> Thm.dest_comb - val l = Node_l |> Thm.dest_comb |> #2; - in (x,l) end +val (x_in_set_left, r_in_set_left) = + let + val (Node_l_x_d, r) = + cprop_of in_set_left + |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 + |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 |> Thm.dest_comb; + val x = Node_l_x_d |> Thm.dest_comb |> #1 |> Thm.dest_comb |> #2; + in (x, r) end; + +val (x_in_set_right, l_in_set_right) = + let + val (Node_l, x) = + cprop_of in_set_right + |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 + |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 + |> Thm.dest_comb |> #1 |> Thm.dest_comb |> #1 + |> Thm.dest_comb; + val l = Node_l |> Thm.dest_comb |> #2; + in (x, l) end; in (* @@ -210,118 +219,128 @@ fun distinctTreeProver dist_thm x_path y_path = let fun dist_subtree [] thm = thm - | dist_subtree (p::ps) thm = - let + | dist_subtree (p :: ps) thm = + let val rule = (case p of Left => all_distinct_left | Right => all_distinct_right) in dist_subtree ps (discharge [thm] rule) end; - val (ps,x_rest,y_rest) = split_common_prefix x_path y_path; + val (ps, x_rest, y_rest) = split_common_prefix x_path y_path; val dist_subtree_thm = dist_subtree ps dist_thm; val subtree = cprop_of dist_subtree_thm |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; - val (_,[l,_,_,r]) = Drule.strip_comb subtree; - + val (_, [l, _, _, r]) = Drule.strip_comb subtree; + fun in_set ps tree = let - val (_,[l,x,_,r]) = Drule.strip_comb tree; + val (_, [l, x, _, r]) = Drule.strip_comb tree; val xT = ctyp_of_term x; - in (case ps of - [] => instantiate - [(ctyp_of_term x_in_set_root,xT)] - [(l_in_set_root,l),(x_in_set_root,x),(r_in_set_root,r)] in_set_root - | (Left::ps') => - let - val in_set_l = in_set ps' l; - val in_set_left' = instantiate [(ctyp_of_term x_in_set_left,xT)] - [(x_in_set_left,x),(r_in_set_left,r)] in_set_left; - in discharge [in_set_l] in_set_left' end - | (Right::ps') => - let - val in_set_r = in_set ps' r; - val in_set_right' = instantiate [(ctyp_of_term x_in_set_right,xT)] - [(x_in_set_right,x),(l_in_set_right,l)] in_set_right; - in discharge [in_set_r] in_set_right' end) - end - - fun in_set' [] = raise TERM ("distinctTreeProver",[]) - | in_set' (Left::ps) = in_set ps l - | in_set' (Right::ps) = in_set ps r; + in + (case ps of + [] => + instantiate + [(ctyp_of_term x_in_set_root, xT)] + [(l_in_set_root, l), (x_in_set_root, x), (r_in_set_root, r)] in_set_root + | Left :: ps' => + let + val in_set_l = in_set ps' l; + val in_set_left' = + instantiate + [(ctyp_of_term x_in_set_left, xT)] + [(x_in_set_left, x), (r_in_set_left, r)] in_set_left; + in discharge [in_set_l] in_set_left' end + | Right :: ps' => + let + val in_set_r = in_set ps' r; + val in_set_right' = + instantiate + [(ctyp_of_term x_in_set_right, xT)] + [(x_in_set_right, x), (l_in_set_right, l)] in_set_right; + in discharge [in_set_r] in_set_right' end) + end; - fun distinct_lr node_in_set Left = discharge [dist_subtree_thm,node_in_set] distinct_left - | distinct_lr node_in_set Right = discharge [dist_subtree_thm,node_in_set] distinct_right + fun in_set' [] = raise TERM ("distinctTreeProver", []) + | in_set' (Left :: ps) = in_set ps l + | in_set' (Right :: ps) = in_set ps r; + + fun distinct_lr node_in_set Left = discharge [dist_subtree_thm,node_in_set] distinct_left + | distinct_lr node_in_set Right = discharge [dist_subtree_thm,node_in_set] distinct_right - val (swap,neq) = - (case x_rest of - [] => let - val y_in_set = in_set' y_rest; - in (false,distinct_lr y_in_set (hd y_rest)) end - | (xr::xrs) => - (case y_rest of - [] => let - val x_in_set = in_set' x_rest; - in (true,distinct_lr x_in_set (hd x_rest)) end - | (yr::yrs) => - let - val x_in_set = in_set' x_rest; - val y_in_set = in_set' y_rest; - in (case xr of - Left => (false, - discharge [dist_subtree_thm,x_in_set,y_in_set] distinct_left_right) - |Right => (true, - discharge [dist_subtree_thm,y_in_set,x_in_set] distinct_left_right)) - end - )) - in if swap then discharge [neq] swap_neq else neq - end + val (swap, neq) = + (case x_rest of + [] => + let val y_in_set = in_set' y_rest; + in (false, distinct_lr y_in_set (hd y_rest)) end + | xr :: xrs => + (case y_rest of + [] => + let val x_in_set = in_set' x_rest; + in (true, distinct_lr x_in_set (hd x_rest)) end + | yr :: yrs => + let + val x_in_set = in_set' x_rest; + val y_in_set = in_set' y_rest; + in + (case xr of + Left => (false, discharge [dist_subtree_thm,x_in_set,y_in_set] distinct_left_right) + | Right => (true, discharge [dist_subtree_thm,y_in_set,x_in_set] distinct_left_right)) + end)); + in if swap then discharge [neq] swap_neq else neq end; -val delete_root = @{thm DistinctTreeProver.delete_root}; -val delete_left = @{thm DistinctTreeProver.delete_left}; -val delete_right = @{thm DistinctTreeProver.delete_right}; +val delete_root = @{thm delete_root}; +val delete_left = @{thm delete_left}; +val delete_right = @{thm delete_right}; fun deleteProver dist_thm [] = delete_root OF [dist_thm] | deleteProver dist_thm (p::ps) = - let - val dist_rule = (case p of Left => all_distinct_left | Right => all_distinct_right); - val dist_thm' = discharge [dist_thm] dist_rule - val del_rule = (case p of Left => delete_left | Right => delete_right) - val del = deleteProver dist_thm' ps; - in discharge [dist_thm, del] del_rule end; + let + val dist_rule = (case p of Left => all_distinct_left | Right => all_distinct_right); + val dist_thm' = discharge [dist_thm] dist_rule; + val del_rule = (case p of Left => delete_left | Right => delete_right); + val del = deleteProver dist_thm' ps; + in discharge [dist_thm, del] del_rule end; -val subtract_Tip = @{thm DistinctTreeProver.subtract_Tip}; -val subtract_Node = @{thm DistinctTreeProver.subtract_Node}; -val delete_Some_all_distinct = @{thm DistinctTreeProver.delete_Some_all_distinct}; -val subtract_Some_all_distinct_res = @{thm DistinctTreeProver.subtract_Some_all_distinct_res}; +val subtract_Tip = @{thm subtract_Tip}; +val subtract_Node = @{thm subtract_Node}; +val delete_Some_all_distinct = @{thm delete_Some_all_distinct}; +val subtract_Some_all_distinct_res = @{thm subtract_Some_all_distinct_res}; local - val (alpha,v) = + val (alpha, v) = let - val ct = subtract_Tip |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 - |> Thm.dest_comb |> #2 + val ct = + subtract_Tip |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2 + |> Thm.dest_comb |> #2; val [alpha] = ct |> Thm.ctyp_of_term |> Thm.dest_ctyp; in (alpha, #1 (dest_Var (term_of ct))) end; in -fun subtractProver (Const ("DistinctTreeProver.tree.Tip",T)) ct dist_thm = - let - val ct' = dist_thm |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; - val thy = theory_of_cterm ct; - val [alphaI] = #2 (dest_Type T); - in Thm.instantiate ([(alpha,ctyp_of thy alphaI)], - [(cterm_of thy (Var (v,treeT alphaI)),ct')]) subtract_Tip - end - | subtractProver (Const ("DistinctTreeProver.tree.Node",nT)$l$x$d$r) ct dist_thm = - let - val ct' = dist_thm |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; - val (_,[cl,_,_,cr]) = Drule.strip_comb ct; - val ps = the (find_tree x (term_of ct')); - val del_tree = deleteProver dist_thm ps; - val dist_thm' = discharge [del_tree, dist_thm] delete_Some_all_distinct; - val sub_l = subtractProver (term_of cl) cl (dist_thm'); - val sub_r = subtractProver (term_of cr) cr - (discharge [sub_l, dist_thm'] subtract_Some_all_distinct_res); - in discharge [del_tree, sub_l, sub_r] subtract_Node end -end -val subtract_Some_all_distinct = @{thm DistinctTreeProver.subtract_Some_all_distinct}; +fun subtractProver (Const (@{const_name Tip}, T)) ct dist_thm = + let + val ct' = dist_thm |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; + val thy = theory_of_cterm ct; + val [alphaI] = #2 (dest_Type T); + in + Thm.instantiate + ([(alpha, ctyp_of thy alphaI)], + [(cterm_of thy (Var (v, treeT alphaI)), ct')]) subtract_Tip + end + | subtractProver (Const (@{const_name Node}, nT) $ l $ x $ d $ r) ct dist_thm = + let + val ct' = dist_thm |> Thm.cprop_of |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; + val (_, [cl, _, _, cr]) = Drule.strip_comb ct; + val ps = the (find_tree x (term_of ct')); + val del_tree = deleteProver dist_thm ps; + val dist_thm' = discharge [del_tree, dist_thm] delete_Some_all_distinct; + val sub_l = subtractProver (term_of cl) cl (dist_thm'); + val sub_r = + subtractProver (term_of cr) cr + (discharge [sub_l, dist_thm'] subtract_Some_all_distinct_res); + in discharge [del_tree, sub_l, sub_r] subtract_Node end; + +end; + +val subtract_Some_all_distinct = @{thm subtract_Some_all_distinct}; + fun distinct_implProver dist_thm ct = let val ctree = ct |> Thm.dest_comb |> #2 |> Thm.dest_comb |> #2; @@ -329,8 +348,10 @@ in subtract_Some_all_distinct OF [sub, dist_thm] end; fun get_fst_success f [] = NONE - | get_fst_success f (x::xs) = (case f x of NONE => get_fst_success f xs - | SOME v => SOME v); + | get_fst_success f (x :: xs) = + (case f x of + NONE => get_fst_success f xs + | SOME v => SOME v); fun neq_x_y ctxt x y name = (let @@ -340,8 +361,8 @@ val x_path = the (find_tree x tree); val y_path = the (find_tree y tree); val thm = distinctTreeProver dist_thm x_path y_path; - in SOME thm - end handle Option => NONE) + in SOME thm + end handle Option.Option => NONE); fun distinctTree_tac names ctxt = SUBGOAL (fn (goal, i) => (case goal of @@ -352,17 +373,18 @@ | NONE => no_tac) | _ => no_tac)) -fun distinctFieldSolver names = mk_solver "distinctFieldSolver" - (distinctTree_tac names o Simplifier.the_context) +fun distinctFieldSolver names = + mk_solver "distinctFieldSolver" (distinctTree_tac names o Simplifier.the_context); fun distinct_simproc names = Simplifier.simproc_global @{theory HOL} "DistinctTreeProver.distinct_simproc" ["x = y"] - (fn thy => fn ss => fn (Const (@{const_name HOL.eq},_)$x$y) => - case try Simplifier.the_context ss of - SOME ctxt => Option.map (fn neq => neq_to_eq_False OF [neq]) - (get_fst_success (neq_x_y ctxt x y) names) - | NONE => NONE - ) + (fn thy => fn ss => fn (Const (@{const_name HOL.eq}, _) $ x $ y) => + (case try Simplifier.the_context ss of + SOME ctxt => + Option.map (fn neq => neq_to_eq_False OF [neq]) + (get_fst_success (neq_x_y ctxt x y) names) + | NONE => NONE)); -end +end; + end; \ No newline at end of file