# HG changeset patch # User haftmann # Date 1213104663 -7200 # Node ID c19be97e4553fdd29144fb5ee52d2265c328f523 # Parent 194aa674c2a168a63e2a899c367afb0f253e91a2 adjusted some proofs involving inats diff -r 194aa674c2a1 -r c19be97e4553 src/HOLCF/FOCUS/Fstreams.thy --- a/src/HOLCF/FOCUS/Fstreams.thy Tue Jun 10 15:31:02 2008 +0200 +++ b/src/HOLCF/FOCUS/Fstreams.thy Tue Jun 10 15:31:03 2008 +0200 @@ -60,7 +60,8 @@ by (simp add: fsingleton_def2) lemma slen_fstreams2[simp]: "#(s ooo ) = iSuc (#s)" -apply (case_tac "#s", auto) +apply (cases "#s") +apply (auto simp add: iSuc_Fin) apply (insert slen_sconc [of _ s "Suc 0" ""], auto) by (simp add: sconc_def) diff -r 194aa674c2a1 -r c19be97e4553 src/HOLCF/ex/Stream.thy --- a/src/HOLCF/ex/Stream.thy Tue Jun 10 15:31:02 2008 +0200 +++ b/src/HOLCF/ex/Stream.thy Tue Jun 10 15:31:03 2008 +0200 @@ -350,14 +350,13 @@ section "slen" lemma slen_empty [simp]: "#\ = 0" -apply (simp add: slen_def stream.finite_def) -by (simp add: inat_defs Least_equality) +by (simp add: slen_def stream.finite_def zero_inat_def Least_equality) lemma slen_scons [simp]: "x ~= \ ==> #(x&&xs) = iSuc (#xs)" apply (case_tac "stream_finite (x && xs)") apply (simp add: slen_def, auto) -apply (simp add: stream.finite_def, auto) -apply (rule Least_Suc2,auto) +apply (simp add: stream.finite_def, auto simp add: iSuc_Fin) +apply (rule Least_Suc2, auto) (*apply (drule sym)*) (*apply (drule sym scons_eq_UU [THEN iffD1],simp)*) apply (erule stream_finite_lemma2, simp) @@ -376,7 +375,9 @@ apply (drule stream_exhaust_eq [THEN iffD1], auto) apply (rule_tac x="a" in exI) apply (rule_tac x="y" in exI, simp) -by (simp add: inat_defs split:inat_splits)+ +apply (case_tac "#y") apply simp_all +apply (case_tac "#y") apply simp_all +done lemma slen_iSuc: "#x = iSuc n --> (? a y. x = a&&y & a ~= \ & #y = n)" by (rule stream.casedist [of x], auto) @@ -387,18 +388,20 @@ lemma slen_scons_eq_rev: "(#x < Fin (Suc (Suc n))) = (!a y. x ~= a && y | a = \ | #y < Fin (Suc n))" apply (rule stream.casedist [of x], auto) apply ((*drule sym,*) drule scons_eq_UU [THEN iffD1],auto) -apply (simp add: inat_defs split:inat_splits) -apply (subgoal_tac "s=y & aa=a",simp) -apply (simp add: inat_defs split:inat_splits) -apply (case_tac "aa=UU",auto) +apply (simp add: zero_inat_def) +apply (subgoal_tac "s=y & aa=a", simp) +apply (simp_all add: not_less iSuc_Fin) +apply (case_tac "#y") apply (simp_all add: iSuc_Fin) +apply (case_tac "aa=UU", auto) apply (erule_tac x="a" in allE, simp) -by (simp add: inat_defs split:inat_splits) +apply (case_tac "#s") apply (simp_all add: iSuc_Fin) +done lemma slen_take_lemma4 [rule_format]: "!s. stream_take n$s ~= s --> #(stream_take n$s) = Fin n" -apply (induct_tac n,auto simp add: Fin_0) -apply (case_tac "s=UU",simp) -by (drule stream_exhaust_eq [THEN iffD1], auto) +apply (induct n, auto simp add: Fin_0) +apply (case_tac "s=UU", simp) +by (drule stream_exhaust_eq [THEN iffD1], auto simp add: iSuc_Fin) (* lemma stream_take_idempotent [simp]: @@ -426,11 +429,12 @@ apply (case_tac "x=UU", simp) apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) apply (erule_tac x="y" in allE, auto) -apply (simp add: inat_defs split:inat_splits) +apply (simp_all add: not_less iSuc_Fin) +apply (case_tac "#y") apply simp_all apply (case_tac "x=UU", simp) apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) apply (erule_tac x="y" in allE, simp) -by (simp add: inat_defs split:inat_splits) +apply (case_tac "#y") by simp_all lemma slen_take_eq_rev: "(#x <= Fin n) = (stream_take n\x = x)" by (simp add: linorder_not_less [symmetric] slen_take_eq) @@ -472,19 +476,18 @@ by (insert iterate_Suc2 [of n F x], auto) lemma slen_rt_mult [rule_format]: "!x. Fin (i + j) <= #x --> Fin j <= #(iterate i$rt$x)" -apply (induct_tac i, auto) -apply (case_tac "x=UU", auto) -apply (simp add: inat_defs) +apply (induct i, auto) +apply (case_tac "x=UU", auto simp add: zero_inat_def) apply (drule stream_exhaust_eq [THEN iffD1], auto) apply (erule_tac x="y" in allE, auto) -apply (simp add: inat_defs split:inat_splits) +apply (simp add: not_le) apply (case_tac "#y") apply (simp_all add: iSuc_Fin) by (simp add: iterate_lemma) lemma slen_take_lemma3 [rule_format]: "!(x::'a::flat stream) y. Fin n <= #x --> x << y --> stream_take n\x = stream_take n\y" apply (induct_tac n, auto) apply (case_tac "x=UU", auto) -apply (simp add: inat_defs) +apply (simp add: zero_inat_def) apply (simp add: Suc_ile_eq) apply (case_tac "y=UU", clarsimp) apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)+ @@ -501,9 +504,7 @@ by (drule ax_flat, simp) lemma slen_strict_mono: "[|stream_finite t; s ~= t; s << (t::'a::flat stream) |] ==> #s < #t" -apply (intro ilessI1, auto) -apply (simp add: slen_mono) -by (drule slen_strict_mono_lemma, auto) +by (auto simp add: slen_mono less_le dest: slen_strict_mono_lemma) lemma stream_take_Suc_neq: "stream_take (Suc n)$s ~=s ==> stream_take n$s ~= stream_take (Suc n)$s" @@ -511,8 +512,7 @@ apply (subgoal_tac "stream_take n$s ~=s") apply (insert slen_take_lemma4 [of n s],auto) apply (rule stream.casedist [of s],simp) -apply (simp add: inat_defs split:inat_splits) -by (simp add: slen_take_lemma4) +by (simp add: slen_take_lemma4 iSuc_Fin) (* ----------------------------------------------------------------------- *) (* theorems about smap *) @@ -601,9 +601,12 @@ apply (subgoal_tac "#(i_rt n s)=0") apply (case_tac "stream_take n$s = s",simp+) apply (insert slen_take_eq [rule_format,of n s],simp) - apply (simp add: inat_defs split:inat_splits) - apply (simp add: slen_take_eq ) -by (simp, insert i_rt_take_lemma1 [of n s],simp) + apply (cases "#s") apply (simp_all add: zero_inat_def) + apply (simp add: slen_take_eq) + apply (cases "#s") + using i_rt_take_lemma1 [of n s] + apply (simp_all add: zero_inat_def) + done lemma i_rt_lemma_slen: "#s=Fin n ==> i_rt n s = UU" by (simp add: i_rt_slen slen_take_lemma1) @@ -616,21 +619,22 @@ lemma take_i_rt_len_lemma: "ALL sl x j t. Fin sl = #x & n <= sl & #(stream_take n$x) = Fin t & #(i_rt n x)= Fin j --> Fin (j + t) = #x" -apply (induct_tac n,auto) - apply (simp add: inat_defs) +apply (induct n, auto) + apply (simp add: zero_inat_def) apply (case_tac "x=UU",auto) - apply (simp add: inat_defs) + apply (simp add: zero_inat_def) apply (drule stream_exhaust_eq [THEN iffD1],clarsimp) apply (subgoal_tac "EX k. Fin k = #y",clarify) apply (erule_tac x="k" in allE) apply (erule_tac x="y" in allE,auto) apply (erule_tac x="THE p. Suc p = t" in allE,auto) - apply (simp add: inat_defs split:inat_splits) - apply (simp add: inat_defs split:inat_splits) + apply (simp add: iSuc_def split: inat.splits) + apply (simp add: iSuc_def split: inat.splits) apply (simp only: the_equality) - apply (simp add: inat_defs split:inat_splits) + apply (simp add: iSuc_def split: inat.splits) apply force -by (simp add: inat_defs split:inat_splits) +apply (simp add: iSuc_def split: inat.splits) +done lemma take_i_rt_len: "[| Fin sl = #x; n <= sl; #(stream_take n$x) = Fin t; #(i_rt n x) = Fin j |] ==> @@ -721,13 +725,13 @@ (* ----------------------------------------------------------------------- *) lemma UU_sconc [simp]: " UU ooo s = s " -by (simp add: sconc_def inat_defs) +by (simp add: sconc_def zero_inat_def) lemma scons_neq_UU: "a~=UU ==> a && s ~=UU" by auto lemma singleton_sconc [rule_format, simp]: "x~=UU --> (x && UU) ooo y = x && y" -apply (simp add: sconc_def inat_defs split:inat_splits,auto) +apply (simp add: sconc_def zero_inat_def iSuc_def split: inat.splits, auto) apply (rule someI2_ex,auto) apply (rule_tac x="x && y" in exI,auto) apply (simp add: i_rt_Suc_forw) @@ -740,12 +744,12 @@ apply (rule stream_finite_ind [of x],auto) apply (simp add: stream.finite_def) apply (drule slen_take_lemma1,blast) - apply (simp add: inat_defs split:inat_splits)+ + apply (simp_all add: zero_inat_def iSuc_def split: inat.splits) apply (erule_tac x="y" in allE,auto) by (rule_tac x="a && w" in exI,auto) lemma rt_sconc1: "Fin n = #x ==> i_rt n (x ooo y) = y" -apply (simp add: sconc_def inat_defs split:inat_splits, arith?,auto) +apply (simp add: sconc_def split: inat.splits, arith?,auto) apply (rule someI2_ex,auto) by (drule ex_sconc,simp) @@ -755,7 +759,7 @@ lemma sconc_UU [simp]:"s ooo UU = s" apply (case_tac "#s") - apply (simp add: sconc_def inat_defs) + apply (simp add: sconc_def) apply (rule someI2_ex) apply (rule_tac x="s" in exI) apply auto @@ -763,25 +767,24 @@ apply (simp add: i_rt_lemma_slen) apply (drule slen_take_lemma1,auto) apply (simp add: i_rt_slen) -by (simp add: sconc_def inat_defs) +by (simp add: sconc_def) lemma stream_take_sconc [simp]: "Fin n = #x ==> stream_take n$(x ooo y) = x" apply (simp add: sconc_def) -apply (simp add: inat_defs split:inat_splits,auto) -apply (rule someI2_ex,auto) +apply (cases "#x") +apply auto +apply (rule someI2_ex, auto) by (drule ex_sconc,simp) lemma scons_sconc [rule_format,simp]: "a~=UU --> (a && x) ooo y = a && x ooo y" -apply (case_tac "#x",auto) - apply (simp add: sconc_def) +apply (cases "#x",auto) + apply (simp add: sconc_def iSuc_Fin) apply (rule someI2_ex) - apply (drule ex_sconc,simp) - apply (rule someI2_ex,auto) + apply (drule ex_sconc, simp) + apply (rule someI2_ex, auto) apply (simp add: i_rt_Suc_forw) - apply (rule_tac x="a && x" in exI,auto) + apply (rule_tac x="a && x" in exI, auto) apply (case_tac "xa=UU",auto) -(*apply (drule_tac s="stream_take nat$x" in scons_neq_UU) - apply (simp add: i_rt_Suc_forw)*) apply (drule stream_exhaust_eq [THEN iffD1],auto) apply (drule streams_prefix_lemma1,simp+) by (simp add: sconc_def) @@ -839,7 +842,7 @@ apply (case_tac "x=UU",auto) apply (drule stream_exhaust_eq [THEN iffD1], auto) apply (erule_tac x="ya" in allE) -by (simp add: inat_defs split:inat_splits) +apply (case_tac "#ya") by simp_all @@ -913,7 +916,9 @@ lemma slen_sconc_mono3: "[| Fin n = #x; Fin k = #(x ooo y) |] ==> n <= k" apply (insert slen_mono [of "x" "x ooo y"]) -by (simp add: inat_defs split: inat_splits) +apply (cases "#x") apply simp_all +apply (cases "#(x ooo y)") apply simp_all +done (* ----------------------------------------------------------------------- *) subsection "finite slen" @@ -986,7 +991,7 @@ (* ----------------------------------------------------------------------- *) lemma constr_sconc_UUs [simp]: "constr_sconc UU s = s" -by (simp add: constr_sconc_def inat_defs) +by (simp add: constr_sconc_def zero_inat_def) lemma "x ooo y = constr_sconc x y" apply (case_tac "#x") @@ -994,7 +999,7 @@ defer 1 apply (simp add: constr_sconc_def del: scons_sconc) apply (case_tac "#s") - apply (simp add: inat_defs) + apply (simp add: iSuc_Fin) apply (case_tac "a=UU",auto simp del: scons_sconc) apply (simp) apply (simp add: sconc_def)