# HG changeset patch # User lcp # Date 754315235 -3600 # Node ID c2fcb6c07689222eca292c0ebb2e3d5a8763fc5f # Parent 8258c26ae0845a311346f3e1ec0dddcc9092255c Correction to eta-contraction; thanks to Markus W. diff -r 8258c26ae084 -r c2fcb6c07689 doc-src/Ref/introduction.tex --- a/doc-src/Ref/introduction.tex Fri Nov 26 12:54:58 1993 +0100 +++ b/doc-src/Ref/introduction.tex Fri Nov 26 13:00:35 1993 +0100 @@ -198,9 +198,10 @@ The {\bf $\eta$-contraction law} asserts $(\lambda x.f(x))\equiv f$, provided $x$ is not free in ~$f$. It asserts {\bf extensionality} of functions: $f\equiv g$ if $f(x)\equiv g(x)$ for all~$x$. Higher-order -unification puts terms into a fully $\eta$-expanded form. For example, if -$F$ has type $(\tau\To\tau)\To\tau$ then its expanded form is $\lambda -h.F(\lambda x.h(x))$. By default, the user sees this expanded form. +unification occasionally puts terms into a fully $\eta$-expanded form. For +example, if $F$ has type $(\tau\To\tau)\To\tau$ then its expanded form is +$\lambda h.F(\lambda x.h(x))$. By default, the user sees this expanded +form. \begin{description} \item[\ttindexbold{eta_contract} \tt:= true;]