# HG changeset patch # User boehmes # Date 1257173399 -3600 # Node ID c394abc5f898ce77017f0b9a5269efc7f79d4135 # Parent 6a21ced199e3e0919bc9d413e17a9cefda3147fc split parsing of counterexamples from translation into terms (avoids Term.dummyT and ill-typed terms) diff -r 6a21ced199e3 -r c394abc5f898 src/HOL/SMT/Tools/z3_model.ML --- a/src/HOL/SMT/Tools/z3_model.ML Mon Nov 02 09:01:18 2009 +0100 +++ b/src/HOL/SMT/Tools/z3_model.ML Mon Nov 02 15:49:59 2009 +0100 @@ -12,15 +12,18 @@ structure Z3_Model: Z3_MODEL = struct -(* parsing primitives *) +(* counterexample expressions *) -fun lift f (x, y) = apsnd (pair x) (f y) -fun lift' f v (x, y) = apsnd (rpair y) (f v x) +datatype expr = True | False | Number of int * int option | Value of int | + Array of array +and array = Fresh of expr | Store of (array * expr) * expr -fun $$ s = lift (Scan.$$ s) -fun this s = lift (Scan.this_string s) + +(* parsing *) -fun par scan = $$ "(" |-- scan --| $$ ")" +val space = Scan.many Symbol.is_ascii_blank +fun in_parens p = Scan.$$ "(" |-- p --| Scan.$$ ")" +fun in_braces p = (space -- Scan.$$ "{") |-- p --| (space -- Scan.$$ "}") val digit = (fn "0" => SOME 0 | "1" => SOME 1 | "2" => SOME 2 | "3" => SOME 3 | @@ -29,131 +32,113 @@ val nat_num = Scan.repeat1 (Scan.some digit) >> (fn ds => fold (fn d => fn i => i * 10 + d) ds 0) -val int_num = Scan.optional (Scan.$$ "-" >> K (fn i => ~i)) I :|-- +val int_num = Scan.optional ($$ "-" >> K (fn i => ~i)) I :|-- (fn sign => nat_num >> sign) val is_char = Symbol.is_ascii_letter orf Symbol.is_ascii_digit orf member (op =) (explode "_+*-/%~=<>$&|?!.@^#") val name = Scan.many1 is_char >> implode - -(* parsing counterexamples *) - -datatype context = Context of { - ttab: term Symtab.table, - nctxt: Name.context, - vtab: term Inttab.table } +fun array_expr st = st |> + in_parens (space |-- ( + Scan.this_string "const" |-- expr >> Fresh || + Scan.this_string "store" -- space |-- array_expr -- expr -- expr >> Store)) -fun make_context (ttab, nctxt, vtab) = - Context {ttab=ttab, nctxt=nctxt, vtab=vtab} +and expr st = st |> (space |-- ( + Scan.this_string "true" >> K True || + Scan.this_string "false" >> K False || + int_num -- Scan.option (Scan.$$ "/" |-- int_num) >> Number || + Scan.this_string "val!" |-- nat_num >> Value || + array_expr >> Array)) -fun empty_context ({terms, ...} : SMT_Translate.recon) = - let - val ns = Symtab.fold (Term.add_free_names o snd) terms [] - val nctxt = Name.make_context ns - in make_context (terms, nctxt, Inttab.empty) end - -fun map_context f (Context {ttab, nctxt, vtab}) = - make_context (f (ttab, nctxt, vtab)) +val mapping = space -- Scan.this_string "->" +val value = mapping |-- expr -fun fresh_name (cx as Context {nctxt, ...}) = - let val (n, nctxt') = yield_singleton Name.variants "" nctxt - in (n, map_context (fn (ttab, _, vtab) => (ttab, nctxt', vtab)) cx) end +val args_case = Scan.repeat expr -- value +val else_case = space -- Scan.this_string "else" |-- value >> pair [] + +val func = + let fun cases st = (else_case >> single || args_case ::: cases) st + in in_braces cases end -fun ident name (cx as Context {ttab, ...}) = - (case Symtab.lookup ttab name of - SOME t => (t, cx) - | NONE => - let val (n, cx') = fresh_name cx - in (Free (n, Term.dummyT), cx) end) +val cex = space |-- Scan.repeat (space |-- name --| mapping -- + (func || expr >> (single o pair []))) -fun set_value t i = map_context (fn (ttab, nctxt, vtab) => - (ttab, nctxt, Inttab.update (i, t) vtab)) - -fun get_value T i (cx as Context {vtab, ...}) = - (case Inttab.lookup vtab i of - SOME t => (t, cx) - | _ => cx |> fresh_name |-> (fn n => - let val t = Free (n, T) - in set_value t i #> pair t end)) +fun read_cex ls = + explode (cat_lines ls) + |> Scan.catch (Scan.finite Symbol.stopper (Scan.error cex)) + |> fst -fun space s = lift (Scan.many Symbol.is_ascii_blank) s -fun spaced p = p --| space +(* translation into terms *) -val key = spaced (lift name) #-> lift' ident -fun mapping st = spaced (this "->") st -fun in_braces p = spaced ($$ "{") |-- p --| spaced ($$ "}") +fun lookup_term tab (name, e) = Option.map (rpair e) (Symtab.lookup tab name) -fun bool_expr st = - (this "true" >> K @{term True} || - this "false" >> K @{term False}) st - -fun number_expr T = +fun with_name_context tab f xs = let - val num = lift int_num >> HOLogic.mk_number T - fun frac n d = Const (@{const_name divide}, T --> T --> T) $ n $ d - in num :|-- (fn n => Scan.optional ($$ "/" |-- num >> frac n) n) end + val ns = Symtab.fold (Term.add_free_names o snd) tab [] + val nctxt = Name.make_context ns + in fst (fold_map f xs (Inttab.empty, nctxt)) end -fun value st = (this "val!" |-- lift nat_num) st -fun value_expr T = value #-> lift' (get_value T) +fun fresh_term T (tab, nctxt) = + let val (n, nctxt') = yield_singleton Name.variants "" nctxt + in (Free (n, T), (tab, nctxt')) end -val domT = Term.domain_type -val ranT = Term.range_type -fun const_array T t = Abs ("x", T, t) -fun upd_array T ((a, t), u) = - Const (@{const_name fun_upd}, [T, domT T, ranT T] ---> T) $ a $ t $ u -fun array_expr T st = if not (can domT T) then Scan.fail st else st |> ( - par (spaced (this "const") |-- expr (ranT T)) >> const_array (domT T) || - par (spaced (this "store") |-- spaced (array_expr T) -- - expr (Term.domain_type T) -- expr (Term.range_type T)) >> upd_array T) +fun term_of_value T i (cx as (tab, _)) = + (case Inttab.lookup tab i of + SOME t => (t, cx) + | NONE => + let val (t, (tab', nctxt')) = fresh_term T cx + in (t, (Inttab.update (i, t) tab', nctxt')) end) -and expr T st = - spaced (bool_expr || number_expr T || value_expr T || array_expr T) st +fun trans_expr _ True = pair @{term True} + | trans_expr _ False = pair @{term False} + | trans_expr T (Number (i, NONE)) = pair (HOLogic.mk_number T i) + | trans_expr T (Number (i, SOME j)) = + pair (Const (@{const_name divide}, [T, T] ---> T) $ + HOLogic.mk_number T i $ HOLogic.mk_number T j) + | trans_expr T (Value i) = term_of_value T i + | trans_expr T (Array a) = trans_array T a -fun const_val t = - let fun rep u = spaced value #-> apfst o set_value u #> pair [] +and trans_array T a = + let val dT = Term.domain_type T and rT = Term.range_type T in - if can HOLogic.dest_number t then rep t - else if t = @{term TT} then rep @{term True} - else expr (Term.fastype_of t) >> (fn u => [HOLogic.mk_eq (t, u)]) + (case a of + Fresh e => trans_expr rT e #>> (fn t => Abs ("x", dT, t)) + | Store ((a', e1), e2) => + trans_array T a' ##>> trans_expr dT e1 ##>> trans_expr rT e2 #>> + (fn ((m, k), v) => + Const (@{const_name fun_upd}, [T, dT, rT] ---> T) $ m $ k $ v)) end -fun func_value T = mapping |-- expr T +fun trans_pat i T f x = + f (Term.domain_type T) ##>> trans (i-1) (Term.range_type T) x #>> + (fn (u, (us, t)) => (u :: us, t)) + +and trans i T ([], v) = + if i > 0 then trans_pat i T fresh_term ([], v) + else trans_expr T v #>> pair [] + | trans i T (p :: ps, v) = trans_pat i T (fn U => trans_expr U p) (ps, v) -fun first_pat T = - let - fun args T = if not (can domT T) then Scan.succeed [] else - expr (domT T) ::: args (ranT T) - fun value ts = func_value (snd (SMT_Translate.dest_funT (length ts) T)) - in args T :-- value end +fun mk_eq' t us u = HOLogic.mk_eq (Term.list_comb (t, us), u) +fun mk_eq (Const (@{const_name apply}, _)) (u' :: us', u) = mk_eq' u' us' u + | mk_eq t (us, u) = mk_eq' t us u -fun func_pat (Ts, T) = fold_map expr Ts -- func_value T -fun else_pat (Ts, T) = - let fun else_arg T cx = cx |> fresh_name |>> (fn n => Free (n, T)) +fun translate (t, cs) = + let val T = Term.fastype_of t in - fold_map (lift' else_arg) Ts ##>> - spaced (this "else") |-- func_value T + (case (can HOLogic.dest_number t, cs) of + (true, [c]) => trans 0 T c #>> (fn (_, u) => [mk_eq u ([], t)]) + | (_, (es, _) :: _) => fold_map (trans (length es) T) cs #>> map (mk_eq t)) end -fun next_pats T (fts as (ts, _)) = - let val Tps = SMT_Translate.dest_funT (length ts) T - in Scan.repeat (func_pat Tps) @@@ (else_pat Tps >> single) >> cons fts end + + +(* overall procedure *) -fun mk_def' f (ts, t) = HOLogic.mk_eq (Term.list_comb (f, ts), t) -fun mk_def (Const (@{const_name apply}, _)) (u :: us, t) = mk_def' u (us, t) - | mk_def f (ts, t) = mk_def' f (ts, t) -fun func_pats t = - let val T = Term.fastype_of t - in first_pat T :|-- next_pats T >> map (mk_def t) end - -val assign = - key --| mapping :|-- (fn t => in_braces (func_pats t) || const_val t) - -val cex = space |-- Scan.repeat assign - -fun parse_counterex recon ls = - (empty_context recon, explode (cat_lines ls)) - |> Scan.catch (Scan.finite' Symbol.stopper (Scan.error cex)) - |> flat o fst +fun parse_counterex ({terms, ...} : SMT_Translate.recon) ls = + read_cex ls + |> map_filter (lookup_term terms) + |> with_name_context terms translate + |> flat end