# HG changeset patch # User wenzelm # Date 1132406461 -3600 # Node ID c3caf13f621d594f151b7bf04ca58b57aa08f211 # Parent 9bd26bda96efe40515e765734e991b33471ff7ba tuned induct syntax; diff -r 9bd26bda96ef -r c3caf13f621d src/HOL/Isar_examples/Puzzle.thy --- a/src/HOL/Isar_examples/Puzzle.thy Sat Nov 19 14:21:00 2005 +0100 +++ b/src/HOL/Isar_examples/Puzzle.thy Sat Nov 19 14:21:01 2005 +0100 @@ -16,13 +16,12 @@ *} theorem - fixes n :: nat assumes f_ax: "\n. f (f n) < f (Suc n)" shows "f n = n" proof (rule order_antisym) { fix n show "n \ f n" - proof (induct k \ "f n" rule: less_induct fixing: n) + proof (induct k \ "f n" fixing: n rule: less_induct) case (less k n) then have hyp: "\m. f m < f n \ m \ f m" by (simp only:) show "n \ f n"