# HG changeset patch # User blanchet # Date 1390263289 -3600 # Node ID c43394c2e5eca9c1881e9e813588c7f2556ea974 # Parent 9475b16e520b46d543cadafaffa5e75a05c4471c compile diff -r 9475b16e520b -r c43394c2e5ec src/HOL/BNF_Examples/Derivation_Trees/Prelim.thy --- a/src/HOL/BNF_Examples/Derivation_Trees/Prelim.thy Mon Jan 20 23:43:42 2014 +0100 +++ b/src/HOL/BNF_Examples/Derivation_Trees/Prelim.thy Tue Jan 21 01:14:49 2014 +0100 @@ -11,6 +11,8 @@ imports "~~/src/HOL/Library/More_BNFs" begin +notation BNF_Def.convol ("<_ , _>") + declare fset_to_fset[simp] lemma fst_snd_convol_o[simp]: " = s" diff -r 9475b16e520b -r c43394c2e5ec src/HOL/BNF_Examples/Stream_Processor.thy --- a/src/HOL/BNF_Examples/Stream_Processor.thy Mon Jan 20 23:43:42 2014 +0100 +++ b/src/HOL/BNF_Examples/Stream_Processor.thy Tue Jan 21 01:14:49 2014 +0100 @@ -152,8 +152,10 @@ bnf_decl ('a, 'b) F (map: F) +notation BNF_Def.convol ("<_ , _>") + definition \ :: "('p,'a) F * 'b \ ('p,'a * 'b) F" where - "\ xb = F id a. (snd xb)> (fst xb)" + "\ xb = F id a. (snd xb)> (fst xb)" (* The strength laws for \: *) lemma \_natural: "F id (map_pair f g) o \ = \ o map_pair (F id f) g" diff -r 9475b16e520b -r c43394c2e5ec src/HOL/BNF_Examples/TreeFsetI.thy --- a/src/HOL/BNF_Examples/TreeFsetI.thy Mon Jan 20 23:43:42 2014 +0100 +++ b/src/HOL/BNF_Examples/TreeFsetI.thy Tue Jan 21 01:14:49 2014 +0100 @@ -12,8 +12,6 @@ imports "~~/src/HOL/Library/More_BNFs" begin -hide_fact (open) Lifting_Product.prod_rel_def - codatatype 'a treeFsetI = Tree (lab: 'a) (sub: "'a treeFsetI fset") (* tree map (contrived example): *)