# HG changeset patch # User nipkow # Date 824368236 -3600 # Node ID c443b2adaf52b7d0f588be7b2d32a0aee635cbd8 # Parent b8b54847c77f3d8ac4286d6f0cc18885d9c8c38e Added a few thms and the new theory RelPow. diff -r b8b54847c77f -r c443b2adaf52 src/HOL/Arith.ML --- a/src/HOL/Arith.ML Tue Feb 13 17:16:06 1996 +0100 +++ b/src/HOL/Arith.ML Thu Feb 15 08:10:36 1996 +0100 @@ -151,6 +151,7 @@ qed_goal "diff_self_eq_0" Arith.thy "m - m = 0" (fn _ => [nat_ind_tac "m" 1, ALLGOALS Asm_simp_tac]); +Addsimps [diff_self_eq_0]; (*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *) val [prem] = goal Arith.thy "[| ~ m n+(m-n) = (m::nat)"; diff -r b8b54847c77f -r c443b2adaf52 src/HOL/ROOT.ML --- a/src/HOL/ROOT.ML Tue Feb 13 17:16:06 1996 +0100 +++ b/src/HOL/ROOT.ML Thu Feb 15 08:10:36 1996 +0100 @@ -27,10 +27,9 @@ use_thy "subset"; use "hologic.ML"; use "typedef.ML"; -use_thy "Prod"; use_thy "Sum"; use_thy "Gfp"; -use_thy "Nat"; +use_thy "RelPow"; use "datatype.ML"; use "ind_syntax.ML"; diff -r b8b54847c77f -r c443b2adaf52 src/HOL/RelPow.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/RelPow.ML Thu Feb 15 08:10:36 1996 +0100 @@ -0,0 +1,76 @@ +(* Title: HOL/RelPow.ML + ID: $Id$ + Author: Tobias Nipkow + Copyright 1996 TU Muenchen +*) + +open RelPow; + +val [rel_pow_0, rel_pow_Suc] = nat_recs rel_pow_def; +Addsimps [rel_pow_0, rel_pow_Suc]; + +goal RelPow.thy "(x,x) : R^0"; +by(Simp_tac 1); +qed "rel_pow_0_I"; + +goal RelPow.thy "!!R. [| (x,y) : R^n; (y,z):R |] ==> (x,z):R^(Suc n)"; +by(Simp_tac 1); +by(fast_tac comp_cs 1); +qed "rel_pow_Suc_I"; + +goal RelPow.thy "!z. (x,y) : R --> (y,z):R^n --> (x,z):R^(Suc n)"; +by(nat_ind_tac "n" 1); +by(Simp_tac 1); +by(fast_tac comp_cs 1); +by(Asm_full_simp_tac 1); +by(fast_tac comp_cs 1); +qed_spec_mp "rel_pow_Suc_I2"; + +goal RelPow.thy "!x z. (x,z):R^(Suc n) --> (? y. (x,y):R & (y,z):R^n)"; +by(nat_ind_tac "n" 1); +by(Simp_tac 1); +by(fast_tac comp_cs 1); +by(Asm_full_simp_tac 1); +by(fast_tac comp_cs 1); +val lemma = result() RS spec RS spec RS mp; + +goal RelPow.thy + "(x,z) : R^n --> (n=0 --> x=z --> P) --> \ +\ (!y m. n = Suc m --> (x,y):R --> (y,z):R^m --> P) --> P"; +by(res_inst_tac [("n","n")] natE 1); +by(Asm_simp_tac 1); +by(hyp_subst_tac 1); +by(fast_tac (HOL_cs addDs [lemma]) 1); +val lemma = result() RS mp RS mp RS mp; + +val [p1,p2,p3] = goal RelPow.thy + "[| (x,z) : R^n; [| n=0; x = z |] ==> P; \ +\ !!y m. [| n = Suc m; (x,y) : R; (y,z) : R^m |] ==> P \ +\ |] ==> P"; +br (p1 RS lemma) 1; +by(REPEAT(ares_tac [impI,p2] 1)); +by(REPEAT(ares_tac [allI,impI,p3] 1)); +qed "UN_rel_powE2"; + +goal RelPow.thy "!!p. p:R^* ==> p : (UN n. R^n)"; +by(split_all_tac 1); +be rtrancl_induct 1; +by(ALLGOALS (fast_tac (rel_cs addIs [rel_pow_0_I,rel_pow_Suc_I]))); +qed "rtrancl_imp_UN_rel_pow"; + +goal RelPow.thy "!y. (x,y):R^n --> (x,y):R^*"; +by(nat_ind_tac "n" 1); +by(Simp_tac 1); +by(fast_tac (HOL_cs addIs [rtrancl_refl]) 1); +by(Simp_tac 1); +by(fast_tac (trancl_cs addEs [rtrancl_into_rtrancl]) 1); +val lemma = result() RS spec RS mp; + +goal RelPow.thy "!!p. p:R^n ==> p:R^*"; +by(split_all_tac 1); +be lemma 1; +qed "UN_rel_pow_imp_rtrancl"; + +goal RelPow.thy "R^* = (UN n. R^n)"; +by(fast_tac (eq_cs addIs [rtrancl_imp_UN_rel_pow,UN_rel_pow_imp_rtrancl]) 1); +qed "rtrancl_is_UN_rel_pow"; diff -r b8b54847c77f -r c443b2adaf52 src/HOL/RelPow.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/RelPow.thy Thu Feb 15 08:10:36 1996 +0100 @@ -0,0 +1,15 @@ +(* Title: HOL/RelPow.thy + ID: $Id$ + Author: Tobias Nipkow + Copyright 1996 TU Muenchen + +R^n = R O ... O R, the n-fold composition of R +*) + +RelPow = Nat + + +consts + "^" :: "('a * 'a) set => nat => ('a * 'a) set" (infixr 100) +defs + rel_pow_def "R^n == nat_rec n id (%m S. R O S)" +end diff -r b8b54847c77f -r c443b2adaf52 src/HOL/Trancl.ML --- a/src/HOL/Trancl.ML Tue Feb 13 17:16:06 1996 +0100 +++ b/src/HOL/Trancl.ML Thu Feb 15 08:10:36 1996 +0100 @@ -86,6 +86,16 @@ by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1)); qed "rtranclE"; +goal Trancl.thy "!!R. (y,z):R^* ==> !x. (x,y):R --> (x,z):R^*"; +be rtrancl_induct 1; +by(fast_tac (HOL_cs addIs [r_into_rtrancl]) 1); +by(fast_tac (HOL_cs addEs [rtrancl_into_rtrancl]) 1); +val lemma = result(); + +goal Trancl.thy "!!R. [| (x,y) : R; (y,z) : R^* |] ==> (x,z) : R^*"; +by(fast_tac (HOL_cs addDs [lemma]) 1); +qed "rtrancl_into_rtrancl2"; + (**** The relation trancl ****)