# HG changeset patch # User huffman # Date 1316725936 25200 # Node ID c478d187637140d40aeaeef38be8b063f2043952 # Parent f65593159ee816f761b489fe0b524d72d2b5dc07 discontinued legacy theorem names from RealDef.thy diff -r f65593159ee8 -r c478d1876371 NEWS --- a/NEWS Thu Sep 22 13:17:14 2011 -0700 +++ b/NEWS Thu Sep 22 14:12:16 2011 -0700 @@ -180,6 +180,26 @@ * Theory Complex_Main: Several redundant theorems have been removed or replaced by more general versions. INCOMPATIBILITY. + real_diff_def ~> minus_real_def + real_divide_def ~> divide_real_def + real_less_def ~> less_le + real_abs_def ~> abs_real_def + real_sgn_def ~> sgn_real_def + real_mult_commute ~> mult_commute + real_mult_assoc ~> mult_assoc + real_mult_1 ~> mult_1_left + real_add_mult_distrib ~> left_distrib + real_zero_not_eq_one ~> zero_neq_one + real_mult_inverse_left ~> left_inverse + INVERSE_ZERO ~> inverse_zero + real_le_refl ~> order_refl + real_le_antisym ~> order_antisym + real_le_trans ~> order_trans + real_le_linear ~> linear + real_le_eq_diff ~> le_iff_diff_le_0 + real_add_left_mono ~> add_left_mono + real_mult_order ~> mult_pos_pos + real_mult_less_mono2 ~> mult_strict_left_mono real_of_int_real_of_nat ~> real_of_int_of_nat_eq real_0_le_divide_iff ~> zero_le_divide_iff realpow_two_disj ~> power2_eq_iff diff -r f65593159ee8 -r c478d1876371 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Thu Sep 22 13:17:14 2011 -0700 +++ b/src/HOL/Deriv.thy Thu Sep 22 14:12:16 2011 -0700 @@ -1247,7 +1247,7 @@ by auto with A have "a < b" "f b < f a" by auto with C have "\ l \ 0" by (auto simp add: not_le algebra_simps) - (metis A add_le_cancel_right assms(1) less_eq_real_def mult_right_mono real_add_left_mono real_le_linear real_le_refl) + (metis A add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl) with assms z show False by (metis DERIV_unique order_less_imp_le) qed diff -r f65593159ee8 -r c478d1876371 src/HOL/Import/HOLLightReal.thy --- a/src/HOL/Import/HOLLightReal.thy Thu Sep 22 13:17:14 2011 -0700 +++ b/src/HOL/Import/HOLLightReal.thy Thu Sep 22 14:12:16 2011 -0700 @@ -233,7 +233,7 @@ lemma REAL_SUB_INV: "(x :: real) \ 0 \ y \ 0 \ inverse x - inverse y = (y - x) / (x * y)" - by (simp add: division_ring_inverse_diff real_divide_def) + by (simp add: division_ring_inverse_diff divide_real_def) lemma REAL_DOWN: "0 < (d :: real) \ (\e>0. e < d)" diff -r f65593159ee8 -r c478d1876371 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Thu Sep 22 13:17:14 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Thu Sep 22 14:12:16 2011 -0700 @@ -2225,12 +2225,12 @@ by(auto simp add:euclidean_eq[where 'a='a] field_simps) also have "... = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:arg_cong[where f=norm] simp add: algebra_simps) also have "... < d" using as[unfolded dist_norm] and `e>0` - by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute) + by(auto simp add:pos_divide_less_eq[OF `e>0`] mult_commute) finally have "y : S" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format]) apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) ** by auto } hence "ball (x - e *\<^sub>R (x - c)) (e*d) Int affine hull S <= S" by auto -moreover have "0 < e*d" using `0R (x - c) : S" using mem_convex[of S x c e] apply (simp add: algebra_simps) using assms by auto @@ -2439,7 +2439,7 @@ using assms RealVector.bounded_linear.pos_bounded[of f] by auto def e1 == "1/K" hence e1_def: "e1>0 & (! x. e1 * norm (f x) <= norm x)" using K_def pos_le_divide_eq[of e1] by auto - def e == "e1 * e2" hence "e>0" using e1_def e2_def real_mult_order by auto + def e == "e1 * e2" hence "e>0" using e1_def e2_def mult_pos_pos by auto { fix y assume y_def: "y : cball x e Int affine hull S" from this have h1: "f y : affine hull (f ` S)" using affine_hull_linear_image[of f S] assms by auto @@ -2469,7 +2469,7 @@ from this obtain e1 where e1_def: "e1>0 & (! x : span S. e1 * norm x <= norm (f x))" using assms injective_imp_isometric[of "span S" f] subspace_span[of S] closed_subspace[of "span S"] by auto - def e == "e1 * e2" hence "e>0" using e1_def e2_def real_mult_order by auto + def e == "e1 * e2" hence "e>0" using e1_def e2_def mult_pos_pos by auto { fix y assume y_def: "y : cball (f x) e Int affine hull (f ` S)" from this have "y : f ` (affine hull S)" using affine_hull_linear_image[of f S] assms by auto from this obtain xy where xy_def: "xy : affine hull S & (f xy = y)" by auto @@ -4291,7 +4291,7 @@ finally show "0 < ?a $$ i" by auto next have "setsum (op $$ ?a) ?D = setsum (\i. inverse (2 * real (card d))) ?D" by(rule setsum_cong2, rule **) - also have "\ < 1" unfolding setsum_constant real_eq_of_nat real_divide_def[THEN sym] + also have "\ < 1" unfolding setsum_constant real_eq_of_nat divide_real_def[THEN sym] by (auto simp add:field_simps) finally show "setsum (op $$ ?a) ?D < 1" by auto next fix i assume "ix. ((1 - c) * x \ 0) = (x \ 0)" using `1 - c > 0` - by (metis mult_zero_left real_mult_commute real_mult_le_cancel_iff1) + by (metis mult_zero_left mult_commute real_mult_le_cancel_iff1) from True have "\n. z n = z0" using cf_z2[of 0] and c unfolding z_def by (simp add: *) thus ?thesis using `e>0` by auto diff -r f65593159ee8 -r c478d1876371 src/HOL/RealDef.thy --- a/src/HOL/RealDef.thy Thu Sep 22 13:17:14 2011 -0700 +++ b/src/HOL/RealDef.thy Thu Sep 22 14:12:16 2011 -0700 @@ -1049,33 +1049,6 @@ declare Abs_real_induct [induct del] declare Abs_real_cases [cases del] -subsection {* Legacy theorem names *} - -text {* TODO: Could we have a way to mark theorem names as deprecated, -and have Isabelle issue a warning and display the preferred name? *} - -lemmas real_diff_def = minus_real_def [of "r" "s", standard] -lemmas real_divide_def = divide_real_def [of "R" "S", standard] -lemmas real_less_def = less_le [of "x::real" "y", standard] -lemmas real_abs_def = abs_real_def [of "r", standard] -lemmas real_sgn_def = sgn_real_def [of "x", standard] -lemmas real_mult_commute = mult_commute [of "z::real" "w", standard] -lemmas real_mult_assoc = mult_assoc [of "z1::real" "z2" "z3", standard] -lemmas real_mult_1 = mult_1_left [of "z::real", standard] -lemmas real_add_mult_distrib = left_distrib [of "z1::real" "z2" "w", standard] -lemmas real_zero_not_eq_one = zero_neq_one [where 'a=real] -lemmas real_mult_inverse_left = left_inverse [of "x::real", standard] -lemmas INVERSE_ZERO = inverse_zero [where 'a=real] -lemmas real_le_refl = order_refl [of "w::real", standard] -lemmas real_le_antisym = order_antisym [of "z::real" "w", standard] -lemmas real_le_trans = order_trans [of "i::real" "j" "k", standard] -lemmas real_le_linear = linear [of "z::real" "w", standard] -lemmas real_le_eq_diff = le_iff_diff_le_0 [of "x::real" "y", standard] -lemmas real_add_left_mono = add_left_mono [of "x::real" "y" "z", standard] -lemmas real_mult_order = mult_pos_pos [of "x::real" "y", standard] -lemmas real_mult_less_mono2 = - mult_strict_left_mono [of "x::real" "y" "z", COMP swap_prems_rl, standard] - subsection{*More Lemmas*} text {* BH: These lemmas should not be necessary; they should be