# HG changeset patch # User huffman # Date 1176762829 -7200 # Node ID c51667189bd3cd0a0f17657d59a3c1d1b9e50227 # Parent 936f7580937d25cb81b50e07e05458696fcbed6a lemma geometric_sum no longer needs class division_by_zero diff -r 936f7580937d -r c51667189bd3 src/HOL/Hyperreal/Series.thy --- a/src/HOL/Hyperreal/Series.thy Tue Apr 17 00:30:44 2007 +0200 +++ b/src/HOL/Hyperreal/Series.thy Tue Apr 17 00:33:49 2007 +0200 @@ -340,7 +340,7 @@ lemmas sumr_geometric = geometric_sum [where 'a = real] lemma geometric_sums: - fixes x :: "'a::{real_normed_field,recpower,division_by_zero}" + fixes x :: "'a::{real_normed_field,recpower}" shows "norm x < 1 \ (\n. x ^ n) sums (1 / (1 - x))" proof - assume less_1: "norm x < 1" @@ -348,8 +348,7 @@ hence neq_0: "x - 1 \ 0" by simp from less_1 have lim_0: "(\n. x ^ n) ----> 0" by (rule LIMSEQ_power_zero) - hence "(\n. x ^ n / (x - 1) - 1 / (x - 1)) ----> 0 / (x - 1) - 1 / (x -- 1)" + hence "(\n. x ^ n / (x - 1) - 1 / (x - 1)) ----> 0 / (x - 1) - 1 / (x - 1)" using neq_0 by (intro LIMSEQ_divide LIMSEQ_diff LIMSEQ_const) hence "(\n. (x ^ n - 1) / (x - 1)) ----> 1 / (1 - x)" by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib) @@ -358,7 +357,7 @@ qed lemma summable_geometric: - fixes x :: "'a::{real_normed_field,recpower,division_by_zero}" + fixes x :: "'a::{real_normed_field,recpower}" shows "norm x < 1 \ summable (\n. x ^ n)" by (rule geometric_sums [THEN sums_summable])