# HG changeset patch # User nipkow # Date 1516631146 -3600 # Node ID c51935a46a8f68aba15f8427a7fae71928d9ea1f # Parent aae933ca6fbdf958f1ef646757887c51dce808a9 removed duplicate diff -r aae933ca6fbd -r c51935a46a8f src/HOL/Conditionally_Complete_Lattices.thy --- a/src/HOL/Conditionally_Complete_Lattices.thy Mon Jan 22 11:23:42 2018 +0100 +++ b/src/HOL/Conditionally_Complete_Lattices.thy Mon Jan 22 15:25:46 2018 +0100 @@ -10,19 +10,6 @@ imports Finite_Set Lattices_Big Set_Interval begin -context linorder -begin - -lemma Sup_fin_eq_Max: - "finite X \ X \ {} \ Sup_fin X = Max X" - by (induct X rule: finite_ne_induct) (simp_all add: sup_max) - -lemma Inf_fin_eq_Min: - "finite X \ X \ {} \ Inf_fin X = Min X" - by (induct X rule: finite_ne_induct) (simp_all add: inf_min) - -end - context preorder begin @@ -471,10 +458,10 @@ .. lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \ X \ {} \ Sup X = Max X" - using cSup_eq_Sup_fin[of X] Sup_fin_eq_Max[of X] by simp + using cSup_eq_Sup_fin[of X] by (simp add: Sup_fin_Max) lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \ X \ {} \ Inf X = Min X" - using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp + using cInf_eq_Inf_fin[of X] by (simp add: Inf_fin_Min) lemma cSup_lessThan[simp]: "Sup {..