# HG changeset patch # User ballarin # Date 1194281284 -3600 # Node ID c532fd8445a2c19f734c98c530c1896f7355d59d # Parent 1cc04c8e1253c89f6a0b36d733b05c390a6de014 Type instance of thm mk_left_commute in locales. diff -r 1cc04c8e1253 -r c532fd8445a2 src/HOL/Library/Boolean_Algebra.thy --- a/src/HOL/Library/Boolean_Algebra.thy Mon Nov 05 17:47:52 2007 +0100 +++ b/src/HOL/Library/Boolean_Algebra.thy Mon Nov 05 17:48:04 2007 +0100 @@ -31,11 +31,11 @@ lemmas disj_ac = disj_assoc disj_commute - mk_left_commute [of "disj", OF disj_assoc disj_commute] + mk_left_commute [where 'a = 'a, of "disj", OF disj_assoc disj_commute] lemmas conj_ac = conj_assoc conj_commute - mk_left_commute [of "conj", OF conj_assoc conj_commute] + mk_left_commute [where 'a = 'a, of "conj", OF conj_assoc conj_commute] lemma dual: "boolean disj conj compl one zero" apply (rule boolean.intro) @@ -206,7 +206,7 @@ lemmas xor_ac = xor_assoc xor_commute - mk_left_commute [of "xor", OF xor_assoc xor_commute] + mk_left_commute [where 'a = 'a, of "xor", OF xor_assoc xor_commute] lemma xor_zero_right [simp]: "x \ \ = x" by (simp only: xor_def compl_zero conj_one_right conj_zero_right disj_zero_right)