# HG changeset patch # User haftmann # Date 1290173758 -3600 # Node ID c5ee1e06d79548e17c3e3eab6cb004ffbf7146ed # Parent ab551d108feb96841e4f91758a3d2001c9e143b7 eval simp rules for predicate type, simplify primitive proofs diff -r ab551d108feb -r c5ee1e06d795 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Fri Nov 19 11:44:46 2010 +0100 +++ b/src/HOL/Predicate.thy Fri Nov 19 14:35:58 2010 +0100 @@ -377,14 +377,17 @@ "Pred (eval x) = x" by (cases x) simp -lemma eval_inject: "eval x = eval y \ x = y" - by (cases x) auto +lemma pred_eqI: + "(\w. eval P w \ eval Q w) \ P = Q" + by (cases P, cases Q) (auto simp add: fun_eq_iff) -definition single :: "'a \ 'a pred" where - "single x = Pred ((op =) x)" +lemma eval_mem [simp]: + "x \ eval P \ eval P x" + by (simp add: mem_def) -definition bind :: "'a pred \ ('a \ 'b pred) \ 'b pred" (infixl "\=" 70) where - "P \= f = Pred (\x. (\y. eval P y \ eval (f y) x))" +lemma eq_mem [simp]: + "x \ (op =) y \ x = y" + by (auto simp add: mem_def) instantiation pred :: (type) "{complete_lattice, boolean_algebra}" begin @@ -398,97 +401,146 @@ definition "\ = Pred \" +lemma eval_bot [simp]: + "eval \ = \" + by (simp add: bot_pred_def) + definition "\ = Pred \" +lemma eval_top [simp]: + "eval \ = \" + by (simp add: top_pred_def) + definition "P \ Q = Pred (eval P \ eval Q)" +lemma eval_inf [simp]: + "eval (P \ Q) = eval P \ eval Q" + by (simp add: inf_pred_def) + definition "P \ Q = Pred (eval P \ eval Q)" +lemma eval_sup [simp]: + "eval (P \ Q) = eval P \ eval Q" + by (simp add: sup_pred_def) + definition "\A = Pred (INFI A eval)" +lemma eval_Inf [simp]: + "eval (\A) = INFI A eval" + by (simp add: Inf_pred_def) + definition "\A = Pred (SUPR A eval)" +lemma eval_Sup [simp]: + "eval (\A) = SUPR A eval" + by (simp add: Sup_pred_def) + definition "- P = Pred (- eval P)" +lemma eval_compl [simp]: + "eval (- P) = - eval P" + by (simp add: uminus_pred_def) + definition "P - Q = Pred (eval P - eval Q)" +lemma eval_minus [simp]: + "eval (P - Q) = eval P - eval Q" + by (simp add: minus_pred_def) + instance proof -qed (auto simp add: less_eq_pred_def less_pred_def - inf_pred_def sup_pred_def bot_pred_def top_pred_def - Inf_pred_def Sup_pred_def uminus_pred_def minus_pred_def fun_Compl_def bool_Compl_def, - auto simp add: le_fun_def less_fun_def le_bool_def less_bool_def - eval_inject mem_def) +qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def + fun_Compl_def fun_diff_def bool_Compl_def bool_diff_def) end +lemma eval_INFI [simp]: + "eval (INFI A f) = INFI A (eval \ f)" + by (unfold INFI_def) simp + +lemma eval_SUPR [simp]: + "eval (SUPR A f) = SUPR A (eval \ f)" + by (unfold SUPR_def) simp + +definition single :: "'a \ 'a pred" where + "single x = Pred ((op =) x)" + +lemma eval_single [simp]: + "eval (single x) = (op =) x" + by (simp add: single_def) + +definition bind :: "'a pred \ ('a \ 'b pred) \ 'b pred" (infixl "\=" 70) where + "P \= f = (SUPR (Predicate.eval P) f)" + +lemma eval_bind [simp]: + "eval (P \= f) = Predicate.eval (SUPR (Predicate.eval P) f)" + by (simp add: bind_def) + lemma bind_bind: "(P \= Q) \= R = P \= (\x. Q x \= R)" - by (auto simp add: bind_def fun_eq_iff) + by (rule pred_eqI) simp lemma bind_single: "P \= single = P" - by (simp add: bind_def single_def) + by (rule pred_eqI) auto lemma single_bind: "single x \= P = P x" - by (simp add: bind_def single_def) + by (rule pred_eqI) auto lemma bottom_bind: "\ \= P = \" - by (auto simp add: bot_pred_def bind_def fun_eq_iff) + by (rule pred_eqI) simp lemma sup_bind: "(P \ Q) \= R = P \= R \ Q \= R" - by (auto simp add: bind_def sup_pred_def fun_eq_iff) + by (rule pred_eqI) simp -lemma Sup_bind: "(\A \= f) = \((\x. x \= f) ` A)" - by (auto simp add: bind_def Sup_pred_def SUP1_iff fun_eq_iff) +lemma Sup_bind: + "(\A \= f) = \((\x. x \= f) ` A)" + by (rule pred_eqI) simp lemma pred_iffI: assumes "\x. eval A x \ eval B x" and "\x. eval B x \ eval A x" shows "A = B" -proof - - from assms have "\x. eval A x \ eval B x" by blast - then show ?thesis by (cases A, cases B) (simp add: fun_eq_iff) -qed + using assms by (auto intro: pred_eqI) lemma singleI: "eval (single x) x" - unfolding single_def by simp + by simp lemma singleI_unit: "eval (single ()) x" - by simp (rule singleI) + by simp lemma singleE: "eval (single x) y \ (y = x \ P) \ P" - unfolding single_def by simp + by simp lemma singleE': "eval (single x) y \ (x = y \ P) \ P" - by (erule singleE) simp + by simp lemma bindI: "eval P x \ eval (Q x) y \ eval (P \= Q) y" - unfolding bind_def by auto + by auto lemma bindE: "eval (R \= Q) y \ (\x. eval R x \ eval (Q x) y \ P) \ P" - unfolding bind_def by auto + by auto lemma botE: "eval \ x \ P" - unfolding bot_pred_def by auto + by auto lemma supI1: "eval A x \ eval (A \ B) x" - unfolding sup_pred_def by (simp add: sup_fun_eq sup_bool_eq) + by auto lemma supI2: "eval B x \ eval (A \ B) x" - unfolding sup_pred_def by (simp add: sup_fun_eq sup_bool_eq) + by auto lemma supE: "eval (A \ B) x \ (eval A x \ P) \ (eval B x \ P) \ P" - unfolding sup_pred_def by auto + by auto lemma single_not_bot [simp]: "single x \ \" @@ -497,8 +549,8 @@ lemma not_bot: assumes "A \ \" obtains x where "eval A x" -using assms by (cases A) - (auto simp add: bot_pred_def, auto simp add: mem_def) + using assms by (cases A) + (auto simp add: bot_pred_def, auto simp add: mem_def) subsubsection {* Emptiness check and definite choice *} @@ -518,7 +570,7 @@ "is_empty (A \ B) \ is_empty A \ is_empty B" by (auto simp add: is_empty_def) -definition singleton :: "(unit => 'a) \ 'a pred \ 'a" where +definition singleton :: "(unit \ 'a) \ 'a pred \ 'a" where "singleton dfault A = (if \!x. eval A x then THE x. eval A x else dfault ())" lemma singleton_eqI: @@ -544,7 +596,9 @@ by (rule singleton_eqI) ultimately have "eval (single (singleton dfault A)) = eval A" by (simp (no_asm_use) add: single_def fun_eq_iff) blast - then show ?thesis by (simp add: eval_inject) + then have "\x. eval (single (singleton dfault A)) x = eval A x" + by simp + then show ?thesis by (rule pred_eqI) qed lemma singleton_undefinedI: