# HG changeset patch # User chaieb # Date 1248380709 -7200 # Node ID c6a045559ce6189a595231951edce1725aeb843b # Parent abda97d2deea79fed9a6e37cdbceb9eac8abaead fixed proof --- fact_setprod removed for fact_altdef_nat diff -r abda97d2deea -r c6a045559ce6 src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Thu Jul 23 21:13:21 2009 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Thu Jul 23 22:25:09 2009 +0200 @@ -2884,7 +2884,7 @@ unfolding m h pochhammer_Suc_setprod apply (simp add: field_simps del: fact_Suc id_def) - unfolding fact_setprod id_def + unfolding fact_altdef_nat id_def unfolding of_nat_setprod unfolding setprod_timesf[symmetric] apply auto @@ -3252,7 +3252,6 @@ lemma F_1_0[simp]: "F [1] [] c = 1/(1 - fps_const c * X)" proof- let ?a = "(Abs_fps (\n. 1)) oo (fps_const c * X)" - thm gp have th0: "(fps_const c * X) $ 0 = 0" by simp show ?thesis unfolding gp[OF th0, symmetric] by (auto simp add: fps_eq_iff pochhammer_fact[symmetric] fps_compose_nth power_mult_distrib cond_value_iff setsum_delta' cong del: if_weak_cong)