# HG changeset patch # User nipkow # Date 845884181 -7200 # Node ID c6a7fd523a5aec1ae384e5e5848a2fbeb4ca8e58 # Parent 21266526ac42db3436e0ab1d87130c18300680ef Solves simple arithmetic goals. diff -r 21266526ac42 -r c6a7fd523a5a src/Provers/nat_transitive.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Provers/nat_transitive.ML Mon Oct 21 09:49:41 1996 +0200 @@ -0,0 +1,253 @@ +(* Title: Provers/nat_transitive.ML + ID: $Id$ + Author: Tobias Nipkow + Copyright 1996 TU Munich +*) + +(*** +A very simple package for inequalities over nat. +It uses all premises of the form + +t = u, t < u, t <= u, ~(t < u), ~(t <= u) + +where t and u must be of type nat, to +1. either derive a constradiction, + in which case the conclusion can be any term, +2. or prove the conclusion, which must be of the same form as the premises. + +The package +- does not deal with the relation ~= +- treats `pred', +, *, ... as atomic terms. Hence it can prove + [| x < y+z; y+z < u |] ==> Suc x < u + but not + [| x < y+z; z < u |] ==> Suc x < y+u +- takes only (in)equalities which are atomic premises into account. It does + not deal with logical operators like -->, & etc. Hence it cannot prove + [| x < y+z & y+z < u |] ==> Suc x < u + +In order not to fall foul of the above limitations, the following hints are +useful: + +1. You may need to run `by(safe_tac HOL_cs)' in order to bring out the atomic + premises. + +2. To get rid of ~= in the premises, it is advisable to use a rule like + nat_neqE = "[| (m::nat) ~= n; m < n ==> P; n < m ==> P |] ==> P" : thm + (the name nat_eqE is chosen in HOL), for example as follows: + by(safe_tac (HOL_cs addSEs [nat_neqE]) + +3. To get rid of `pred', you may be able to do the following: + expand `pred(m)' into `case m of 0 => 0 | Suc n => n' and use split_tac + to turn the case-expressions into logical case distinctions. In HOL: + simp_tac (... addsimps [pred_def] setloop (split_tac [expand_nat_case])) + +The basic tactic is `trans_tac'. In order to use `trans_tac' as a solver in +the simplifier, `cut_trans_tac' is also provided, which cuts the given thms +in as facts. + +Notes: +- It should easily be possible to adapt this package to other numeric types + like int. +- There is ample scope for optimizations, which so far have not proved + necessary. +- The code can be simplified by adding the negated conclusion to the + premises to derive a contradiction. However, this would restrict the + package to classical logics. +***) + +(* The package works for arbitrary logics. + You just need to instantiate the following parameter structure. +*) +signature LESS_ARITH = +sig + val lessI: thm (* n < Suc n *) + val zero_less_Suc: thm (* 0 < Suc n *) + val less_reflE: thm (* n < n ==> P *) + val less_zeroE: thm (* n < 0 ==> P *) + val less_incr: thm (* m < n ==> Suc m < Suc n *) + val less_decr: thm (* Suc m < Suc n ==> m < n *) + val less_incr_rhs: thm (* m < n ==> m < Suc n *) + val less_decr_lhs: thm (* Suc m < n ==> m < n *) + val less_trans_Suc: thm (* [| i < j; j < k |] ==> Suc i < k *) + val leD: thm (* m <= n ==> m < Suc n *) + val not_lessD: thm (* ~(m < n) ==> n < Suc m *) + val not_leD: thm (* ~(m <= n) ==> n < m *) + val eqD1: thm (* m = n ==> m < Suc n *) + val eqD2: thm (* m = n ==> m < Suc n *) + val not_lessI: thm (* n < Suc m ==> ~(m < n) *) + val leI: thm (* m < Suc n ==> m <= n *) + val not_leI: thm (* n < m ==> ~(m <= n) *) + val eqI: thm (* [| m < Suc n; n < Suc m |] ==> n = m *) + val is_zero: term -> bool + val decomp: term -> (term * int * string * term * int)option +(* decomp(`Suc^i(x) Rel Suc^j(y)') should yield (x,i,Rel,y,j) + where Rel is one of "<", "~<", "<=", "~<=" and "=" *) +end; + + +signature TRANS_TAC = +sig + val trans_tac: int -> tactic + val cut_trans_tac: thm list -> int -> tactic +end; + +functor Trans_Tac_Fun(Less:LESS_ARITH):TRANS_TAC = +struct + +datatype proof = Asm of int + | Thm of proof list * thm + | Incr1 of proof * int (* Increment 1 side *) + | Incr2 of proof * int (* Increment 2 sides *); + + +(*** Turn proof objects into thms ***) + +fun incr2(th,i) = if i=0 then th else + if i>0 then incr2(th RS Less.less_incr,i-1) + else incr2(th RS Less.less_decr,i+1); + +fun incr1(th,i) = if i=0 then th else + if i>0 then incr1(th RS Less.less_incr_rhs,i-1) + else incr1(th RS Less.less_decr_lhs,i+1); + +fun prove asms = + let fun pr(Asm i) = nth_elem(i,asms) + | pr(Thm(prfs,thm)) = (map pr prfs) MRS thm + | pr(Incr1(p,i)) = incr1(pr p,i) + | pr(Incr2(p,i)) = incr2(pr p,i) + in pr end; + +(*** Internal representation of inequalities +(x,i,y,j) means x+i < y+j. +Leads to simpler case distinctions than the normalized x < y+k +***) +type less = term * int * term * int * proof; + +(*** raised when contradiction is found ***) +exception Contr of proof; + +(*** raised when goal can't be proved ***) +exception Cant; + +infix subsumes; + +fun (x,i,y,j:int,_) subsumes (x',i',y',j',_) = + x=x' andalso y=y' andalso j-i<=j'-i'; + +fun trivial(x,i:int,y,j,_) = (x=y orelse Less.is_zero(x)) andalso i=j + then raise Contr(Thm([Incr1(Incr2(p,~j),j-i)],Less.less_reflE)) else + if Less.is_zero(y) andalso i>=j + then raise Contr(Thm([Incr2(p,~j)],Less.less_zeroE)) + else less; + +fun mktrans((x,i,_,j,p):less,(_,k,z,l,q)) = + ctest(if j >= k + then (x,i+1,z,l+(j-k),Thm([p,Incr2(q,j-k)],Less.less_trans_Suc)) + else (x,i+(k-j)+1,z,l,Thm([Incr2(p,k-j),q],Less.less_trans_Suc))); + +fun trans (new as (x,i,y,j,p)) olds = + let fun tr(news, old as (x1,i1,y1,j1,p1):less) = + if y1=x then mktrans(old,new)::news else + if x1=y then mktrans(new,old)::news else news + in foldl tr ([],olds) end; + +fun close1(olds: less list)(new:less):less list = + if trivial new orelse exists (fn old => old subsumes new) olds then olds + else let val news = trans new olds + in close (add new (olds,[])) news end +and close (olds: less list) ([]:less list) = olds + | close olds ((new:less)::news) = close (close1 olds (ctest new)) news; + +(*** end of transitive closure ***) + +(* recognize and solve trivial goal *) +fun triv_sol(x,i,y,j,_) = + if x=y andalso i (case find_first (fn fact => fact subsumes less) facts of + None => raise Cant + | Some(a,m,b,n,p) => Incr1(Incr2(p,j-n),n+i-m-j)) + | Some prf => prf; + +(* turn term into a less-tuple *) +fun mkasm(t,n) = + case Less.decomp(t) of + Some(x,i,rel,y,j) => (case rel of + "<" => [(x,i,y,j,Asm n)] + | "~<" => [(y,j,x,i+1,Thm([Asm n],Less.not_lessD))] + | "<=" => [(x,i,y,j+1,Thm([Asm n],Less.leD))] + | "~<=" => [(y,j,x,i,Thm([Asm n],Less.not_leD))] + | "=" => [(x,i,y,j+1,Thm([Asm n],Less.eqD1)), + (y,j,x,i+1,Thm([Asm n],Less.eqD2))] + | "~=" => [] + | _ => error("trans_tac/decomp: unknown relation " ^ rel)) + | None => []; + +(* mkconcl t returns a pair (goals,proof) where goals is a list of *) +(* less-subgoals to solve, and proof the validation which proves the concl t *) +(* from the subgoals. Asm ~1 is dummy *) +fun mkconcl t = + case Less.decomp(t) of + Some(x,i,rel,y,j) => (case rel of + "<" => ([(x,i,y,j,Asm ~1)],Asm 0) + | "~<" => ([(y,j,x,i+1,Asm ~1)],Thm([Asm 0],Less.not_lessI)) + | "<=" => ([(x,i,y,j+1,Asm ~1)],Thm([Asm 0],Less.leI)) + | "~<=" => ([(y,j,x,i,Asm ~1)],Thm([Asm 0],Less.not_leI)) + | "=" => ([(x,i,y,j+1,Asm ~1),(y,j,x,i+1,Asm ~1)], + Thm([Asm 0,Asm 1],Less.eqI)) + | "~=" => raise Cant + | _ => error("trans_tac/decomp: unknown relation " ^ rel)) + | None => raise Cant; + + +val trans_tac = SUBGOAL (fn (A,n) => + let val Hs = Logic.strip_assums_hyp A + val C = Logic.strip_assums_concl A + val lesss = flat(map mkasm (Hs ~~ (0 upto (length Hs - 1)))); + val clesss = close [] lesss + val (subgoals,prf) = mkconcl C + val prfs = map (solve clesss) subgoals + in METAHYPS (fn asms => let val thms = map (prove asms) prfs + in rtac (prove thms prf) 1 end) n + end + handle Contr(p) => METAHYPS (fn asms => rtac (prove asms p) 1) n + | Cant => no_tac); + +fun cut_trans_tac thms = cut_facts_tac thms THEN' trans_tac; + +end; + +(*** Tests +fun test s = prove_goal Nat.thy ("!!m::nat." ^ s) (fn _ => [trans_tac 1]); + +test "[| i Suc(Suc i) < m"; +test "[| i Suc(Suc(Suc i)) <= m"; +test "[| i ~ m <= Suc(Suc i)"; +test "[| i ~ m < Suc(Suc(Suc i))"; +test "[| i m = Suc(Suc(Suc i))"; +test "[| i m = Suc(Suc(Suc i))"; +***)