# HG changeset patch # User huffman # Date 1118713820 -7200 # Node ID c6f5ade2960820c26cf21c6e3738fb3ccf743d25 # Parent a9dec19693488ae4df4a600425eec55b70ada224 moved continuity simproc to a separate file diff -r a9dec1969348 -r c6f5ade29608 src/HOLCF/Cfun.thy --- a/src/HOLCF/Cfun.thy Tue Jun 14 03:35:15 2005 +0200 +++ b/src/HOLCF/Cfun.thy Tue Jun 14 03:50:20 2005 +0200 @@ -9,6 +9,7 @@ theory Cfun imports TypedefPcpo +files ("cont_proc.ML") begin defaultsort cpo @@ -201,7 +202,7 @@ apply (simp add: monofun_Rep_CFun2) done -text {* a lemma about the exchange of lubs for type @{typ "'a -> 'b"}: uses MF2 lemmas from Cont.thy *} +text {* a lemma about the exchange of lubs for type @{typ "'a -> 'b"} *} lemma ex_lub_cfun: "[| chain(F); chain(Y) |] ==> lub(range(%j. lub(range(%i. F(j)$(Y i))))) = @@ -269,33 +270,13 @@ apply (simp add: p2 cont2cont_CF1L_rev) done -text {* cont2cont tactic *} +text {* continuity simplification procedure *} lemmas cont_lemmas1 = cont_const cont_id cont_Rep_CFun2 cont2cont_Rep_CFun cont2cont_LAM -text {* - Continuity simproc by Brian Huffman. - Given the term @{term "cont f"}, the procedure tries to - construct the theorem @{prop "cont f == True"}. If this - theorem cannot be completely solved by the introduction - rules, then the procedure returns a conditional rewrite - rule with the unsolved subgoals as premises. -*} - -ML_setup {* -local - val rules = thms "cont_lemmas1"; - fun solve_cont sg _ t = - let val tr = instantiate' [] [SOME (cterm_of sg t)] Eq_TrueI; - val tac = REPEAT_ALL_NEW (resolve_tac rules) 1; - in Option.map fst (Seq.pull (tac tr)) end; -in - val cont_proc = Simplifier.simproc (Theory.sign_of (the_context ())) - "continuity" ["cont f"] solve_cont; -end; -Addsimprocs [cont_proc]; -*} +use "cont_proc.ML"; +setup ContProc.setup; (*val cont_tac = (fn i => (resolve_tac cont_lemmas i));*) (*val cont_tacR = (fn i => (REPEAT (cont_tac i)));*) diff -r a9dec1969348 -r c6f5ade29608 src/HOLCF/IsaMakefile --- a/src/HOLCF/IsaMakefile Tue Jun 14 03:35:15 2005 +0200 +++ b/src/HOLCF/IsaMakefile Tue Jun 14 03:50:20 2005 +0200 @@ -35,7 +35,7 @@ ROOT.ML Sprod.ML Sprod.thy \ Ssum.ML Ssum.thy \ Tr.ML Tr.thy TypedefPcpo.thy Up.ML \ - Up.thy adm_tac.ML cont_consts.ML fixrec_package.ML \ + Up.thy adm_tac.ML cont_consts.ML cont_proc.ML fixrec_package.ML \ domain/axioms.ML domain/extender.ML domain/interface.ML \ domain/library.ML domain/syntax.ML domain/theorems.ML holcf_logic.ML \ ex/Stream.thy document/root.tex diff -r a9dec1969348 -r c6f5ade29608 src/HOLCF/cont_proc.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/cont_proc.ML Tue Jun 14 03:50:20 2005 +0200 @@ -0,0 +1,102 @@ +(* Title: HOLCF/cont_proc.ML + ID: $Id$ + Author: Brian Huffman +*) + +signature CONT_PROC = +sig + val is_lcf_term: term -> bool + val cont_thms: term -> thm list + val cont_proc: theory -> simproc + val setup: (theory -> theory) list +end; + +structure ContProc: CONT_PROC = +struct + +(** theory context references **) + +val cont_K = thm "cont_const"; +val cont_I = thm "cont_id"; +val cont_A = thm "cont2cont_Rep_CFun"; +val cont_L = thm "cont2cont_LAM"; +val cont_R = thm "cont_Rep_CFun2"; + +(* checks whether a term is written entirely in the LCF sublanguage *) +fun is_lcf_term (Const("Cfun.Rep_CFun",_) $ t $ u) = is_lcf_term t andalso is_lcf_term u + | is_lcf_term (Const("Cfun.Abs_CFun",_) $ Abs (_,_,t)) = is_lcf_term t + | is_lcf_term (_ $ _) = false + | is_lcf_term (Abs _) = false + | is_lcf_term _ = true; (* Const, Free, Var, and Bound are OK *) + +(* + efficiently generates a cont thm for every LAM abstraction in a term, + using forward proof and reusing common subgoals +*) +local + fun var 0 = [SOME cont_I] + | var n = NONE :: var (n-1); + + fun k NONE = cont_K + | k (SOME x) = x; + + fun ap NONE NONE = NONE + | ap x y = SOME (k y RS (k x RS cont_A)); + + fun zip [] [] = [] + | zip [] (y::ys) = (ap NONE y ) :: zip [] ys + | zip (x::xs) [] = (ap x NONE) :: zip xs [] + | zip (x::xs) (y::ys) = (ap x y ) :: zip xs ys + + fun lam [] = ([], cont_K) + | lam (x::ys) = let + (* should use "standard" for thms that are used multiple times *) + (* it seems to allow for sharing in explicit proof objects *) + val x' = standard (k x); + val Lx = x' RS cont_L; + in (map (fn y => SOME (k y RS Lx)) ys, x') end; + + (* first list: cont thm for each dangling bound variable *) + (* second list: cont thm for each LAM *) + fun cont_thms1 (Const _ $ f $ t) = let + val (cs1,ls1) = cont_thms1 f; + val (cs2,ls2) = cont_thms1 t; + in (zip cs1 cs2, ls1 @ ls2) end + | cont_thms1 (Const _ $ Abs (_,_,t)) = let + val (cs,ls) = cont_thms1 t; + val (cs',l) = lam cs; + in (cs',l::ls) end + | cont_thms1 (Bound n) = (var n, []) + | cont_thms1 _ = ([],[]); +in + (* precondition: is_lcf_term t = true *) + fun cont_thms t = snd (cont_thms1 t); +end; + +(* + Given the term "cont f", the procedure tries to construct the + theorem "cont f == True". If this theorem cannot be completely + solved by the introduction rules, then the procedure returns a + conditional rewrite rule with the unsolved subgoals as premises. +*) + +local + fun solve_cont sg _ (t as Const("Cont.cont",_) $ f) = + let + val rules = [cont_K, cont_I, cont_R, cont_A, cont_L]; + val tr = instantiate' [] [SOME (cterm_of sg t)] Eq_TrueI; + val f' = Const("Cfun.Abs_CFun",dummyT) $ f; + val tac = if is_lcf_term f' + then rtac (hd (cont_thms f')) 1 + else REPEAT_ALL_NEW (resolve_tac rules) 1; + in Option.map fst (Seq.pull (tac tr)) end + | solve_cont sg _ _ = NONE; +in + fun cont_proc thy = Simplifier.simproc (Theory.sign_of thy) + "cont_proc" ["cont f"] solve_cont; +end; + +val setup = + [fn thy => Simplifier.change_simpset_of (op addsimprocs) [cont_proc thy] thy]; + +end;