# HG changeset patch # User krauss # Date 1262165093 -3600 # Node ID c7f621786035d5521ef16f0bc5ce99bc55c84268 # Parent a7acd6c68d9b8b107206130fef545b0fe2f8a946 killed a few warnings diff -r a7acd6c68d9b -r c7f621786035 src/HOL/Fun.thy --- a/src/HOL/Fun.thy Wed Dec 30 01:08:33 2009 +0100 +++ b/src/HOL/Fun.thy Wed Dec 30 10:24:53 2009 +0100 @@ -171,7 +171,7 @@ by (simp add: surj_def) lemma bij_id[simp]: "bij id" -by (simp add: bij_def inj_on_id surj_id) +by (simp add: bij_def) lemma inj_onI: "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" @@ -432,14 +432,14 @@ by (rule ext, auto) lemma inj_on_fun_updI: "\ inj_on f A; y \ f`A \ \ inj_on (f(x:=y)) A" -by(fastsimp simp:inj_on_def image_def) +by (fastsimp simp:inj_on_def image_def) lemma fun_upd_image: "f(x:=y) ` A = (if x \ A then insert y (f ` (A-{x})) else f ` A)" by auto lemma fun_upd_comp: "f \ (g(x := y)) = (f \ g)(x := f y)" -by(auto intro: ext) +by (auto intro: ext) subsection {* @{text override_on} *} @@ -496,7 +496,7 @@ thus "inj_on f A" by simp next assume "inj_on f A" - with A show "inj_on (swap a b f) A" by(iprover intro: inj_on_imp_inj_on_swap) + with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) qed lemma surj_imp_surj_swap: "surj f ==> surj (swap a b f)" @@ -529,7 +529,7 @@ lemma the_inv_into_f_f: "[| inj_on f A; x : A |] ==> the_inv_into A f (f x) = x" apply (simp add: the_inv_into_def inj_on_def) -apply (blast intro: the_equality) +apply blast done lemma f_the_inv_into_f: diff -r a7acd6c68d9b -r c7f621786035 src/HOL/HOL.thy --- a/src/HOL/HOL.thy Wed Dec 30 01:08:33 2009 +0100 +++ b/src/HOL/HOL.thy Wed Dec 30 10:24:53 2009 +0100 @@ -869,7 +869,6 @@ and impCE [elim!] and disjE [elim!] and conjE [elim!] - and conjE [elim!] declare ex_ex1I [intro!] and allI [intro!] diff -r a7acd6c68d9b -r c7f621786035 src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Wed Dec 30 01:08:33 2009 +0100 +++ b/src/HOL/Lattices.thy Wed Dec 30 10:24:53 2009 +0100 @@ -201,7 +201,7 @@ shows "x \ (y \ z) = (x \ y) \ (x \ z)" proof- have "x \ (y \ z) = (x \ (x \ z)) \ (y \ z)" by(simp add:sup_inf_absorb) - also have "\ = x \ (z \ (x \ y))" by(simp add:D inf_commute sup_assoc del:sup_absorb1) + also have "\ = x \ (z \ (x \ y))" by(simp add:D inf_commute sup_assoc) also have "\ = ((x \ y) \ x) \ ((x \ y) \ z)" by(simp add:inf_sup_absorb inf_commute) also have "\ = (x \ y) \ (x \ z)" by(simp add:D) @@ -213,7 +213,7 @@ shows "x \ (y \ z) = (x \ y) \ (x \ z)" proof- have "x \ (y \ z) = (x \ (x \ z)) \ (y \ z)" by(simp add:inf_sup_absorb) - also have "\ = x \ (z \ (x \ y))" by(simp add:D sup_commute inf_assoc del:inf_absorb1) + also have "\ = x \ (z \ (x \ y))" by(simp add:D sup_commute inf_assoc) also have "\ = ((x \ y) \ x) \ ((x \ y) \ z)" by(simp add:sup_inf_absorb sup_commute) also have "\ = (x \ y) \ (x \ z)" by(simp add:D) @@ -404,7 +404,7 @@ by (simp add: inf_sup_distrib1) then have "- x \ \ = y \ \" using sup_compl_top assms(2) by simp - then show "- x = y" by (simp add: inf_top_right) + then show "- x = y" by simp qed lemma double_compl [simp]: diff -r a7acd6c68d9b -r c7f621786035 src/HOL/Set.thy --- a/src/HOL/Set.thy Wed Dec 30 01:08:33 2009 +0100 +++ b/src/HOL/Set.thy Wed Dec 30 10:24:53 2009 +0100 @@ -517,10 +517,10 @@ *} lemma equalityD1: "A = B ==> A \ B" - by (simp add: subset_refl) + by simp lemma equalityD2: "A = B ==> B \ A" - by (simp add: subset_refl) + by simp text {* \medskip Be careful when adding this to the claset as @{text @@ -529,7 +529,7 @@ *} lemma equalityE: "A = B ==> (A \ B ==> B \ A ==> P) ==> P" - by (simp add: subset_refl) + by simp lemma equalityCE [elim]: "A = B ==> (c \ A ==> c \ B ==> P) ==> (c \ A ==> c \ B ==> P) ==> P" @@ -629,7 +629,7 @@ by simp lemma Pow_top: "A \ Pow A" - by (simp add: subset_refl) + by simp subsubsection {* Set complement *}