# HG changeset patch # User wenzelm # Date 1278403344 -7200 # Node ID 8244558af8a55148b3c3ce8f0067795024110fa8 # Parent 17b05b104390b990450def62e1e8fe6e17227b7f# Parent c82cf6e1166966c3b81c81e0e481f0e16baf0f23 merged diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/Array.thy --- a/src/HOL/Imperative_HOL/Array.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/Array.thy Tue Jul 06 10:02:24 2010 +0200 @@ -8,24 +8,132 @@ imports Heap_Monad begin +subsection {* Primitive layer *} + +definition + array_present :: "'a\heap array \ heap \ bool" where + "array_present a h \ addr_of_array a < lim h" + +definition + get_array :: "'a\heap array \ heap \ 'a list" where + "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))" + +definition + set_array :: "'a\heap array \ 'a list \ heap \ heap" where + "set_array a x = + arrays_update (\h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))" + +definition array :: "'a list \ heap \ 'a\heap array \ heap" where + "array xs h = (let + l = lim h; + r = Array l; + h'' = set_array r xs (h\lim := l + 1\) + in (r, h''))" + +definition length :: "'a\heap array \ heap \ nat" where + "length a h = List.length (get_array a h)" + +definition change :: "'a\heap array \ nat \ 'a \ heap \ heap" where + "change a i x h = set_array a ((get_array a h)[i:=x]) h" + +text {* Properties of imperative arrays *} + +text {* FIXME: Does there exist a "canonical" array axiomatisation in +the literature? *} + +definition noteq_arrs :: "('a\heap) array \ ('b\heap) array \ bool" (infix "=!!=" 70) where + "r =!!= s \ TYPEREP('a) \ TYPEREP('b) \ addr_of_array r \ addr_of_array s" + +lemma noteq_arrs_sym: "a =!!= b \ b =!!= a" + and unequal_arrs [simp]: "a \ a' \ a =!!= a'" + unfolding noteq_arrs_def by auto + +lemma noteq_arrs_irrefl: "r =!!= r \ False" + unfolding noteq_arrs_def by auto + +lemma present_new_arr: "array_present a h \ a =!!= fst (array xs h)" + by (simp add: array_present_def noteq_arrs_def array_def Let_def) + +lemma array_get_set_eq [simp]: "get_array r (set_array r x h) = x" + by (simp add: get_array_def set_array_def o_def) + +lemma array_get_set_neq [simp]: "r =!!= s \ get_array r (set_array s x h) = get_array r h" + by (simp add: noteq_arrs_def get_array_def set_array_def) + +lemma set_array_same [simp]: + "set_array r x (set_array r y h) = set_array r x h" + by (simp add: set_array_def) + +lemma array_set_set_swap: + "r =!!= r' \ set_array r x (set_array r' x' h) = set_array r' x' (set_array r x h)" + by (simp add: Let_def expand_fun_eq noteq_arrs_def set_array_def) + +lemma get_array_change_eq [simp]: + "get_array a (change a i v h) = (get_array a h) [i := v]" + by (simp add: change_def) + +lemma nth_change_array_neq_array [simp]: + "a =!!= b \ get_array a (change b j v h) ! i = get_array a h ! i" + by (simp add: change_def noteq_arrs_def) + +lemma get_arry_array_change_elem_neqIndex [simp]: + "i \ j \ get_array a (change a j v h) ! i = get_array a h ! i" + by simp + +lemma length_change [simp]: + "length a (change b i v h) = length a h" + by (simp add: change_def length_def set_array_def get_array_def) + +lemma change_swap_neqArray: + "a =!!= a' \ + change a i v (change a' i' v' h) + = change a' i' v' (change a i v h)" +apply (unfold change_def) +apply simp +apply (subst array_set_set_swap, assumption) +apply (subst array_get_set_neq) +apply (erule noteq_arrs_sym) +apply (simp) +done + +lemma change_swap_neqIndex: + "\ i \ i' \ \ change a i v (change a i' v' h) = change a i' v' (change a i v h)" + by (auto simp add: change_def array_set_set_swap list_update_swap) + +lemma get_array_init_array_list: + "get_array (fst (array ls h)) (snd (array ls' h)) = ls'" + by (simp add: Let_def split_def array_def) + +lemma set_array: + "set_array (fst (array ls h)) + new_ls (snd (array ls h)) + = snd (array new_ls h)" + by (simp add: Let_def split_def array_def) + +lemma array_present_change [simp]: + "array_present a (change b i v h) = array_present a h" + by (simp add: change_def array_present_def set_array_def get_array_def) + + + subsection {* Primitives *} definition new :: "nat \ 'a\heap \ 'a array Heap" where - [code del]: "new n x = Heap_Monad.heap (Heap.array n x)" + [code del]: "new n x = Heap_Monad.heap (Array.array (replicate n x))" definition of_list :: "'a\heap list \ 'a array Heap" where - [code del]: "of_list xs = Heap_Monad.heap (Heap.array_of_list xs)" + [code del]: "of_list xs = Heap_Monad.heap (Array.array xs)" definition - length :: "'a\heap array \ nat Heap" where - [code del]: "length arr = Heap_Monad.heap (\h. (Heap.length arr h, h))" + len :: "'a\heap array \ nat Heap" where + [code del]: "len arr = Heap_Monad.heap (\h. (Array.length arr h, h))" definition nth :: "'a\heap array \ nat \ 'a Heap" where - [code del]: "nth a i = (do len \ length a; + [code del]: "nth a i = (do len \ len a; (if i < len then Heap_Monad.heap (\h. (get_array a h ! i, h)) else raise ''array lookup: index out of range'') @@ -34,9 +142,9 @@ definition upd :: "nat \ 'a \ 'a\heap array \ 'a\heap array Heap" where - [code del]: "upd i x a = (do len \ length a; + [code del]: "upd i x a = (do len \ len a; (if i < len - then Heap_Monad.heap (\h. (a, Heap.upd a i x h)) + then Heap_Monad.heap (\h. (a, change a i x h)) else raise ''array update: index out of range'') done)" @@ -73,7 +181,7 @@ freeze :: "'a\heap array \ 'a list Heap" where "freeze a = (do - n \ length a; + n \ len a; mapM (nth a) [0..heap \ 'a) \ 'a array \ 'a array Heap" where "map f a = (do - n \ length a; + n \ len a; mapM (\n. map_entry n f a) [0.._. x)" - by (rule Heap_eqI) (simp add: make_def new_def array_of_list_replicate map_replicate_trivial of_list_def) + by (rule Heap_eqI) (simp add: make_def new_def map_replicate_trivial of_list_def) lemma array_of_list_make [code]: "of_list xs = make (List.length xs) (\n. xs ! n)" @@ -125,12 +232,12 @@ "Array.make n f = Array.make' (Code_Numeral.of_nat n) (f o Code_Numeral.nat_of)" by (simp add: make'_def o_def) -definition length' where - [code del]: "length' a = Array.length a \= (\n. return (Code_Numeral.of_nat n))" -hide_const (open) length' +definition len' where + [code del]: "len' a = Array.len a \= (\n. return (Code_Numeral.of_nat n))" +hide_const (open) len' lemma [code]: - "Array.length a = Array.length' a \= (\i. return (Code_Numeral.nat_of i))" - by (simp add: length'_def) + "Array.len a = Array.len' a \= (\i. return (Code_Numeral.nat_of i))" + by (simp add: len'_def) definition nth' where [code del]: "nth' a = Array.nth a o Code_Numeral.nat_of" @@ -154,7 +261,7 @@ code_const Array.new' (SML "(fn/ ()/ =>/ Array.array/ ((_),/ (_)))") code_const Array.of_list' (SML "(fn/ ()/ =>/ Array.fromList/ _)") code_const Array.make' (SML "(fn/ ()/ =>/ Array.tabulate/ ((_),/ (_)))") -code_const Array.length' (SML "(fn/ ()/ =>/ Array.length/ _)") +code_const Array.len' (SML "(fn/ ()/ =>/ Array.length/ _)") code_const Array.nth' (SML "(fn/ ()/ =>/ Array.sub/ ((_),/ (_)))") code_const Array.upd' (SML "(fn/ ()/ =>/ Array.update/ ((_),/ (_),/ (_)))") @@ -167,7 +274,7 @@ code_const Array (OCaml "failwith/ \"bare Array\"") code_const Array.new' (OCaml "(fun/ ()/ ->/ Array.make/ (Big'_int.int'_of'_big'_int/ _)/ _)") code_const Array.of_list' (OCaml "(fun/ ()/ ->/ Array.of'_list/ _)") -code_const Array.length' (OCaml "(fun/ ()/ ->/ Big'_int.big'_int'_of'_int/ (Array.length/ _))") +code_const Array.len' (OCaml "(fun/ ()/ ->/ Big'_int.big'_int'_of'_int/ (Array.length/ _))") code_const Array.nth' (OCaml "(fun/ ()/ ->/ Array.get/ _/ (Big'_int.int'_of'_big'_int/ _))") code_const Array.upd' (OCaml "(fun/ ()/ ->/ Array.set/ _/ (Big'_int.int'_of'_big'_int/ _)/ _)") @@ -180,8 +287,10 @@ code_const Array (Haskell "error/ \"bare Array\"") code_const Array.new' (Haskell "Heap.newArray/ (0,/ _)") code_const Array.of_list' (Haskell "Heap.newListArray/ (0,/ _)") -code_const Array.length' (Haskell "Heap.lengthArray") +code_const Array.len' (Haskell "Heap.lengthArray") code_const Array.nth' (Haskell "Heap.readArray") code_const Array.upd' (Haskell "Heap.writeArray") +hide_const (open) new map -- {* avoid clashed with some popular names *} + end diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/Heap.thy --- a/src/HOL/Imperative_HOL/Heap.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/Heap.thy Tue Jul 06 10:02:24 2010 +0200 @@ -1,4 +1,4 @@ -(* Title: HOL/Library/Heap.thy +(* Title: HOL/Imperative_HOL/Heap.thy Author: John Matthews, Galois Connections; Alexander Krauss, TU Muenchen *) @@ -14,8 +14,6 @@ class heap = typerep + countable -text {* Instances for common HOL types *} - instance nat :: heap .. instance prod :: (heap, heap) heap .. @@ -34,47 +32,26 @@ instance String.literal :: heap .. -text {* Reflected types themselves are heap-representable *} - -instantiation typerep :: countable -begin - -fun to_nat_typerep :: "typerep \ nat" where - "to_nat_typerep (Typerep.Typerep c ts) = to_nat (to_nat c, to_nat (map to_nat_typerep ts))" - -instance -proof (rule countable_classI) - fix t t' :: typerep and ts - have "(\t'. to_nat_typerep t = to_nat_typerep t' \ t = t') - \ (\ts'. map to_nat_typerep ts = map to_nat_typerep ts' \ ts = ts')" - proof (induct rule: typerep.induct) - case (Typerep c ts) show ?case - proof (rule allI, rule impI) - fix t' - assume hyp: "to_nat_typerep (Typerep.Typerep c ts) = to_nat_typerep t'" - then obtain c' ts' where t': "t' = (Typerep.Typerep c' ts')" - by (cases t') auto - with Typerep hyp have "c = c'" and "ts = ts'" by simp_all - with t' show "Typerep.Typerep c ts = t'" by simp - qed - next - case Nil_typerep then show ?case by simp - next - case (Cons_typerep t ts) then show ?case by auto - qed - then have "to_nat_typerep t = to_nat_typerep t' \ t = t'" by auto - moreover assume "to_nat_typerep t = to_nat_typerep t'" - ultimately show "t = t'" by simp -qed - -end - instance typerep :: heap .. subsection {* A polymorphic heap with dynamic arrays and references *} +text {* + References and arrays are developed in parallel, + but keeping them separate makes some later proofs simpler. +*} + types addr = nat -- "untyped heap references" +types heap_rep = nat -- "representable values" + +record heap = + arrays :: "typerep \ addr \ heap_rep list" + refs :: "typerep \ addr \ heap_rep" + lim :: addr + +definition empty :: heap where + "empty = \arrays = (\_ _. []), refs = (\_ _. 0), lim = 0\" datatype 'a array = Array addr datatype 'a ref = Ref addr -- "note the phantom type 'a " @@ -99,6 +76,8 @@ instance ref :: (type) countable by (rule countable_classI [of addr_of_ref]) simp +text {* Syntactic convenience *} + setup {* Sign.add_const_constraint (@{const_name Array}, SOME @{typ "nat \ 'a\heap array"}) #> Sign.add_const_constraint (@{const_name Ref}, SOME @{typ "nat \ 'a\heap ref"}) @@ -106,335 +85,6 @@ #> Sign.add_const_constraint (@{const_name addr_of_ref}, SOME @{typ "'a\heap ref \ nat"}) *} -types heap_rep = nat -- "representable values" - -record heap = - arrays :: "typerep \ addr \ heap_rep list" - refs :: "typerep \ addr \ heap_rep" - lim :: addr - -definition empty :: heap where - "empty = \arrays = (\_. undefined), refs = (\_. undefined), lim = 0\" -- "why undefined?" - - -subsection {* Imperative references and arrays *} - -text {* - References and arrays are developed in parallel, - but keeping them separate makes some later proofs simpler. -*} - -subsubsection {* Primitive operations *} - -definition - new_ref :: "heap \ ('a\heap) ref \ heap" where - "new_ref h = (let l = lim h in (Ref l, h\lim := l + 1\))" - -definition - new_array :: "heap \ ('a\heap) array \ heap" where - "new_array h = (let l = lim h in (Array l, h\lim := l + 1\))" - -definition - ref_present :: "'a\heap ref \ heap \ bool" where - "ref_present r h \ addr_of_ref r < lim h" - -definition - array_present :: "'a\heap array \ heap \ bool" where - "array_present a h \ addr_of_array a < lim h" - -definition - get_ref :: "'a\heap ref \ heap \ 'a" where - "get_ref r h = from_nat (refs h (TYPEREP('a)) (addr_of_ref r))" - -definition - get_array :: "'a\heap array \ heap \ 'a list" where - "get_array a h = map from_nat (arrays h (TYPEREP('a)) (addr_of_array a))" - -definition - set_ref :: "'a\heap ref \ 'a \ heap \ heap" where - "set_ref r x = - refs_update (\h. h(TYPEREP('a) := ((h (TYPEREP('a))) (addr_of_ref r:=to_nat x))))" - -definition - set_array :: "'a\heap array \ 'a list \ heap \ heap" where - "set_array a x = - arrays_update (\h. h(TYPEREP('a) := ((h(TYPEREP('a))) (addr_of_array a:=map to_nat x))))" - -subsubsection {* Interface operations *} - -definition - ref :: "'a \ heap \ 'a\heap ref \ heap" where - "ref x h = (let (r, h') = new_ref h; - h'' = set_ref r x h' - in (r, h''))" - -definition - array :: "nat \ 'a \ heap \ 'a\heap array \ heap" where - "array n x h = (let (r, h') = new_array h; - h'' = set_array r (replicate n x) h' - in (r, h''))" - -definition - array_of_list :: "'a list \ heap \ 'a\heap array \ heap" where - "array_of_list xs h = (let (r, h') = new_array h; - h'' = set_array r xs h' - in (r, h''))" - -definition - upd :: "'a\heap array \ nat \ 'a \ heap \ heap" where - "upd a i x h = set_array a ((get_array a h)[i:=x]) h" - -definition - length :: "'a\heap array \ heap \ nat" where - "length a h = size (get_array a h)" - -definition - array_ran :: "('a\heap) option array \ heap \ 'a set" where - "array_ran a h = {e. Some e \ set (get_array a h)}" - -- {*FIXME*} - - -subsubsection {* Reference equality *} - -text {* - The following relations are useful for comparing arrays and references. -*} - -definition - noteq_refs :: "('a\heap) ref \ ('b\heap) ref \ bool" (infix "=!=" 70) -where - "r =!= s \ TYPEREP('a) \ TYPEREP('b) \ addr_of_ref r \ addr_of_ref s" - -definition - noteq_arrs :: "('a\heap) array \ ('b\heap) array \ bool" (infix "=!!=" 70) -where - "r =!!= s \ TYPEREP('a) \ TYPEREP('b) \ addr_of_array r \ addr_of_array s" - -lemma noteq_refs_sym: "r =!= s \ s =!= r" - and noteq_arrs_sym: "a =!!= b \ b =!!= a" - and unequal_refs [simp]: "r \ r' \ r =!= r'" -- "same types!" - and unequal_arrs [simp]: "a \ a' \ a =!!= a'" -unfolding noteq_refs_def noteq_arrs_def by auto - -lemma noteq_refs_irrefl: "r =!= r \ False" - unfolding noteq_refs_def by auto - -lemma present_new_ref: "ref_present r h \ r =!= fst (ref v h)" - by (simp add: ref_present_def new_ref_def ref_def Let_def noteq_refs_def) - -lemma present_new_arr: "array_present a h \ a =!!= fst (array v x h)" - by (simp add: array_present_def noteq_arrs_def new_array_def array_def Let_def) - - -subsubsection {* Properties of heap containers *} - -text {* Properties of imperative arrays *} - -text {* FIXME: Does there exist a "canonical" array axiomatisation in -the literature? *} - -lemma array_get_set_eq [simp]: "get_array r (set_array r x h) = x" - by (simp add: get_array_def set_array_def o_def) - -lemma array_get_set_neq [simp]: "r =!!= s \ get_array r (set_array s x h) = get_array r h" - by (simp add: noteq_arrs_def get_array_def set_array_def) - -lemma set_array_same [simp]: - "set_array r x (set_array r y h) = set_array r x h" - by (simp add: set_array_def) - -lemma array_set_set_swap: - "r =!!= r' \ set_array r x (set_array r' x' h) = set_array r' x' (set_array r x h)" - by (simp add: Let_def expand_fun_eq noteq_arrs_def set_array_def) - -lemma array_ref_set_set_swap: - "set_array r x (set_ref r' x' h) = set_ref r' x' (set_array r x h)" - by (simp add: Let_def expand_fun_eq set_array_def set_ref_def) - -lemma get_array_upd_eq [simp]: - "get_array a (upd a i v h) = (get_array a h) [i := v]" - by (simp add: upd_def) - -lemma nth_upd_array_neq_array [simp]: - "a =!!= b \ get_array a (upd b j v h) ! i = get_array a h ! i" - by (simp add: upd_def noteq_arrs_def) - -lemma get_arry_array_upd_elem_neqIndex [simp]: - "i \ j \ get_array a (upd a j v h) ! i = get_array a h ! i" - by simp - -lemma length_upd_eq [simp]: - "length a (upd a i v h) = length a h" - by (simp add: length_def upd_def) - -lemma length_upd_neq [simp]: - "length a (upd b i v h) = length a h" - by (simp add: upd_def length_def set_array_def get_array_def) - -lemma upd_swap_neqArray: - "a =!!= a' \ - upd a i v (upd a' i' v' h) - = upd a' i' v' (upd a i v h)" -apply (unfold upd_def) -apply simp -apply (subst array_set_set_swap, assumption) -apply (subst array_get_set_neq) -apply (erule noteq_arrs_sym) -apply (simp) -done - -lemma upd_swap_neqIndex: - "\ i \ i' \ \ upd a i v (upd a i' v' h) = upd a i' v' (upd a i v h)" -by (auto simp add: upd_def array_set_set_swap list_update_swap) - -lemma get_array_init_array_list: - "get_array (fst (array_of_list ls h)) (snd (array_of_list ls' h)) = ls'" - by (simp add: Let_def split_def array_of_list_def) - -lemma set_array: - "set_array (fst (array_of_list ls h)) - new_ls (snd (array_of_list ls h)) - = snd (array_of_list new_ls h)" - by (simp add: Let_def split_def array_of_list_def) - -lemma array_present_upd [simp]: - "array_present a (upd b i v h) = array_present a h" - by (simp add: upd_def array_present_def set_array_def get_array_def) - -lemma array_of_list_replicate: - "array_of_list (replicate n x) = array n x" - by (simp add: expand_fun_eq array_of_list_def array_def) - - -text {* Properties of imperative references *} - -lemma next_ref_fresh [simp]: - assumes "(r, h') = new_ref h" - shows "\ ref_present r h" - using assms by (cases h) (auto simp add: new_ref_def ref_present_def Let_def) - -lemma next_ref_present [simp]: - assumes "(r, h') = new_ref h" - shows "ref_present r h'" - using assms by (cases h) (auto simp add: new_ref_def ref_present_def Let_def) - -lemma ref_get_set_eq [simp]: "get_ref r (set_ref r x h) = x" - by (simp add: get_ref_def set_ref_def) - -lemma ref_get_set_neq [simp]: "r =!= s \ get_ref r (set_ref s x h) = get_ref r h" - by (simp add: noteq_refs_def get_ref_def set_ref_def) - -(* FIXME: We need some infrastructure to infer that locally generated - new refs (by new_ref(_no_init), new_array(')) are distinct - from all existing refs. -*) - -lemma ref_set_get: "set_ref r (get_ref r h) h = h" -apply (simp add: set_ref_def get_ref_def) -oops - -lemma set_ref_same[simp]: - "set_ref r x (set_ref r y h) = set_ref r x h" - by (simp add: set_ref_def) - -lemma ref_set_set_swap: - "r =!= r' \ set_ref r x (set_ref r' x' h) = set_ref r' x' (set_ref r x h)" - by (simp add: Let_def expand_fun_eq noteq_refs_def set_ref_def) - -lemma ref_new_set: "fst (ref v (set_ref r v' h)) = fst (ref v h)" - by (simp add: ref_def new_ref_def set_ref_def Let_def) - -lemma ref_get_new [simp]: - "get_ref (fst (ref v h)) (snd (ref v' h)) = v'" - by (simp add: ref_def Let_def split_def) - -lemma ref_set_new [simp]: - "set_ref (fst (ref v h)) new_v (snd (ref v h)) = snd (ref new_v h)" - by (simp add: ref_def Let_def split_def) - -lemma ref_get_new_neq: "r =!= (fst (ref v h)) \ - get_ref r (snd (ref v h)) = get_ref r h" - by (simp add: get_ref_def set_ref_def ref_def Let_def new_ref_def noteq_refs_def) - -lemma lim_set_ref [simp]: - "lim (set_ref r v h) = lim h" - by (simp add: set_ref_def) - -lemma ref_present_new_ref [simp]: - "ref_present r h \ ref_present r (snd (ref v h))" - by (simp add: new_ref_def ref_present_def ref_def Let_def) - -lemma ref_present_set_ref [simp]: - "ref_present r (set_ref r' v h) = ref_present r h" - by (simp add: set_ref_def ref_present_def) - -lemma noteq_refsI: "\ ref_present r h; \ref_present r' h \ \ r =!= r'" - unfolding noteq_refs_def ref_present_def - by auto - -lemma array_ranI: "\ Some b = get_array a h ! i; i < Heap.length a h \ \ b \ array_ran a h" -unfolding array_ran_def Heap.length_def by simp - -lemma array_ran_upd_array_Some: - assumes "cl \ array_ran a (Heap.upd a i (Some b) h)" - shows "cl \ array_ran a h \ cl = b" -proof - - have "set (get_array a h[i := Some b]) \ insert (Some b) (set (get_array a h))" by (rule set_update_subset_insert) - with assms show ?thesis - unfolding array_ran_def Heap.upd_def by fastsimp -qed - -lemma array_ran_upd_array_None: - assumes "cl \ array_ran a (Heap.upd a i None h)" - shows "cl \ array_ran a h" -proof - - have "set (get_array a h[i := None]) \ insert None (set (get_array a h))" by (rule set_update_subset_insert) - with assms show ?thesis - unfolding array_ran_def Heap.upd_def by auto -qed - - -text {* Non-interaction between imperative array and imperative references *} - -lemma get_array_set_ref [simp]: "get_array a (set_ref r v h) = get_array a h" - by (simp add: get_array_def set_ref_def) - -lemma nth_set_ref [simp]: "get_array a (set_ref r v h) ! i = get_array a h ! i" - by simp - -lemma get_ref_upd [simp]: "get_ref r (upd a i v h) = get_ref r h" - by (simp add: get_ref_def set_array_def upd_def) - -lemma new_ref_upd: "fst (ref v (upd a i v' h)) = fst (ref v h)" - by (simp add: set_array_def get_array_def Let_def ref_new_set upd_def ref_def new_ref_def) - -text {*not actually true ???*} -lemma upd_set_ref_swap: "upd a i v (set_ref r v' h) = set_ref r v' (upd a i v h)" -apply (case_tac a) -apply (simp add: Let_def upd_def) -apply auto -oops - -lemma length_new_ref[simp]: - "length a (snd (ref v h)) = length a h" - by (simp add: get_array_def set_ref_def length_def new_ref_def ref_def Let_def) - -lemma get_array_new_ref [simp]: - "get_array a (snd (ref v h)) = get_array a h" - by (simp add: new_ref_def ref_def set_ref_def get_array_def Let_def) - -lemma ref_present_upd [simp]: - "ref_present r (upd a i v h) = ref_present r h" - by (simp add: upd_def ref_present_def set_array_def get_array_def) - -lemma array_present_set_ref [simp]: - "array_present a (set_ref r v h) = array_present a h" - by (simp add: array_present_def set_ref_def) - -lemma array_present_new_ref [simp]: - "array_present a h \ array_present a (snd (ref v h))" - by (simp add: array_present_def new_ref_def ref_def Let_def) - -hide_const (open) empty array array_of_list upd length ref +hide_const (open) empty end diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/Heap_Monad.thy --- a/src/HOL/Imperative_HOL/Heap_Monad.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/Heap_Monad.thy Tue Jul 06 10:02:24 2010 +0200 @@ -349,8 +349,6 @@ lemmas MREC_rule = mrec.MREC_rule lemmas MREC_pinduct = mrec.MREC_pinduct -hide_const (open) heap execute - subsection {* Code generator setup *} @@ -365,8 +363,6 @@ code_datatype raise' -- {* avoid @{const "Heap"} formally *} -hide_const (open) raise' - subsubsection {* SML and OCaml *} @@ -493,4 +489,6 @@ code_const return (Haskell "return") code_const Heap_Monad.raise' (Haskell "error/ _") +hide_const (open) Heap heap execute raise' + end diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/Ref.thy --- a/src/HOL/Imperative_HOL/Ref.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/Ref.thy Tue Jul 06 10:02:24 2010 +0200 @@ -5,7 +5,7 @@ header {* Monadic references *} theory Ref -imports Heap_Monad +imports Array begin text {* @@ -14,45 +14,177 @@ and http://www.smlnj.org/doc/Conversion/top-level-comparison.html *} +subsection {* Primitive layer *} + +definition present :: "heap \ 'a\heap ref \ bool" where + "present h r \ addr_of_ref r < lim h" + +definition get :: "heap \ 'a\heap ref \ 'a" where + "get h = from_nat \ refs h TYPEREP('a) \ addr_of_ref" + +definition set :: "'a\heap ref \ 'a \ heap \ heap" where + "set r x = refs_update + (\h. h(TYPEREP('a) := ((h (TYPEREP('a))) (addr_of_ref r := to_nat x))))" + +definition alloc :: "'a \ heap \ 'a\heap ref \ heap" where + "alloc x h = (let + l = lim h; + r = Ref l + in (r, set r x (h\lim := l + 1\)))" + +definition noteq :: "'a\heap ref \ 'b\heap ref \ bool" (infix "=!=" 70) where + "r =!= s \ TYPEREP('a) \ TYPEREP('b) \ addr_of_ref r \ addr_of_ref s" + +lemma noteq_sym: "r =!= s \ s =!= r" + and unequal [simp]: "r \ r' \ r =!= r'" -- "same types!" + by (auto simp add: noteq_def) + +lemma noteq_irrefl: "r =!= r \ False" + by (auto simp add: noteq_def) + +lemma present_alloc_neq: "present h r \ r =!= fst (alloc v h)" + by (simp add: present_def alloc_def noteq_def Let_def) + +lemma next_fresh [simp]: + assumes "(r, h') = alloc x h" + shows "\ present h r" + using assms by (cases h) (auto simp add: alloc_def present_def Let_def) + +lemma next_present [simp]: + assumes "(r, h') = alloc x h" + shows "present h' r" + using assms by (cases h) (auto simp add: alloc_def set_def present_def Let_def) + +lemma get_set_eq [simp]: + "get (set r x h) r = x" + by (simp add: get_def set_def) + +lemma get_set_neq [simp]: + "r =!= s \ get (set s x h) r = get h r" + by (simp add: noteq_def get_def set_def) + +lemma set_same [simp]: + "set r x (set r y h) = set r x h" + by (simp add: set_def) + +lemma set_set_swap: + "r =!= r' \ set r x (set r' x' h) = set r' x' (set r x h)" + by (simp add: noteq_def set_def expand_fun_eq) + +lemma alloc_set: + "fst (alloc x (set r x' h)) = fst (alloc x h)" + by (simp add: alloc_def set_def Let_def) + +lemma get_alloc [simp]: + "get (snd (alloc x h)) (fst (alloc x' h)) = x" + by (simp add: alloc_def Let_def) + +lemma set_alloc [simp]: + "set (fst (alloc v h)) v' (snd (alloc v h)) = snd (alloc v' h)" + by (simp add: alloc_def Let_def) + +lemma get_alloc_neq: "r =!= fst (alloc v h) \ + get (snd (alloc v h)) r = get h r" + by (simp add: get_def set_def alloc_def Let_def noteq_def) + +lemma lim_set [simp]: + "lim (set r v h) = lim h" + by (simp add: set_def) + +lemma present_alloc [simp]: + "present h r \ present (snd (alloc v h)) r" + by (simp add: present_def alloc_def Let_def) + +lemma present_set [simp]: + "present (set r v h) = present h" + by (simp add: present_def expand_fun_eq) + +lemma noteq_I: + "present h r \ \ present h r' \ r =!= r'" + by (auto simp add: noteq_def present_def) + + subsection {* Primitives *} -definition - new :: "'a\heap \ 'a ref Heap" where - [code del]: "new v = Heap_Monad.heap (Heap.ref v)" +definition ref :: "'a\heap \ 'a ref Heap" where + [code del]: "ref v = Heap_Monad.heap (alloc v)" -definition - lookup :: "'a\heap ref \ 'a Heap" ("!_" 61) where - [code del]: "lookup r = Heap_Monad.heap (\h. (get_ref r h, h))" +definition lookup :: "'a\heap ref \ 'a Heap" ("!_" 61) where + [code del]: "lookup r = Heap_Monad.heap (\h. (get h r, h))" -definition - update :: "'a ref \ ('a\heap) \ unit Heap" ("_ := _" 62) where - [code del]: "update r e = Heap_Monad.heap (\h. ((), set_ref r e h))" +definition update :: "'a ref \ 'a\heap \ unit Heap" ("_ := _" 62) where + [code del]: "update r v = Heap_Monad.heap (\h. ((), set r v h))" subsection {* Derivates *} -definition - change :: "('a\heap \ 'a) \ 'a ref \ 'a Heap" -where - "change f r = (do x \ ! r; - let y = f x; - r := y; - return y - done)" - -hide_const (open) new lookup update change +definition change :: "('a\heap \ 'a) \ 'a ref \ 'a Heap" where + "change f r = (do + x \ ! r; + let y = f x; + r := y; + return y + done)" subsection {* Properties *} lemma lookup_chain: "(!r \ f) = f" - by (cases f) - (auto simp add: Let_def bindM_def lookup_def expand_fun_eq) + by (rule Heap_eqI) (simp add: lookup_def) lemma update_change [code]: - "r := e = Ref.change (\_. e) r \ return ()" - by (auto simp add: change_def lookup_chain) + "r := e = change (\_. e) r \ return ()" + by (rule Heap_eqI) (simp add: change_def lookup_chain) + + +text {* Non-interaction between imperative array and imperative references *} + +lemma get_array_set [simp]: + "get_array a (set r v h) = get_array a h" + by (simp add: get_array_def set_def) + +lemma nth_set [simp]: + "get_array a (set r v h) ! i = get_array a h ! i" + by simp + +lemma get_change [simp]: + "get (Array.change a i v h) r = get h r" + by (simp add: get_def Array.change_def set_array_def) + +lemma alloc_change: + "fst (alloc v (Array.change a i v' h)) = fst (alloc v h)" + by (simp add: Array.change_def get_array_def set_array_def alloc_def Let_def) + +lemma change_set_swap: + "Array.change a i v (set r v' h) = set r v' (Array.change a i v h)" + by (simp add: Array.change_def get_array_def set_array_def set_def) + +lemma length_alloc [simp]: + "Array.length a (snd (alloc v h)) = Array.length a h" + by (simp add: Array.length_def get_array_def alloc_def set_def Let_def) + +lemma get_array_alloc [simp]: + "get_array a (snd (alloc v h)) = get_array a h" + by (simp add: get_array_def alloc_def set_def Let_def) + +lemma present_change [simp]: + "present (Array.change a i v h) = present h" + by (simp add: Array.change_def set_array_def expand_fun_eq present_def) + +lemma array_present_set [simp]: + "array_present a (set r v h) = array_present a h" + by (simp add: array_present_def set_def) + +lemma array_present_alloc [simp]: + "array_present a h \ array_present a (snd (alloc v h))" + by (simp add: array_present_def alloc_def Let_def) + +lemma set_array_set_swap: + "set_array a xs (set r x' h) = set r x' (set_array a xs h)" + by (simp add: set_array_def set_def) + +hide_const (open) present get set alloc lookup update change subsection {* Code generator setup *} @@ -61,7 +193,7 @@ code_type ref (SML "_/ Unsynchronized.ref") code_const Ref (SML "raise/ (Fail/ \"bare Ref\")") -code_const Ref.new (SML "(fn/ ()/ =>/ Unsynchronized.ref/ _)") +code_const ref (SML "(fn/ ()/ =>/ Unsynchronized.ref/ _)") code_const Ref.lookup (SML "(fn/ ()/ =>/ !/ _)") code_const Ref.update (SML "(fn/ ()/ =>/ _/ :=/ _)") @@ -72,7 +204,7 @@ code_type ref (OCaml "_/ ref") code_const Ref (OCaml "failwith/ \"bare Ref\")") -code_const Ref.new (OCaml "(fn/ ()/ =>/ ref/ _)") +code_const ref (OCaml "(fn/ ()/ =>/ ref/ _)") code_const Ref.lookup (OCaml "(fn/ ()/ =>/ !/ _)") code_const Ref.update (OCaml "(fn/ ()/ =>/ _/ :=/ _)") @@ -83,7 +215,7 @@ code_type ref (Haskell "Heap.STRef/ Heap.RealWorld/ _") code_const Ref (Haskell "error/ \"bare Ref\"") -code_const Ref.new (Haskell "Heap.newSTRef") +code_const ref (Haskell "Heap.newSTRef") code_const Ref.lookup (Haskell "Heap.readSTRef") code_const Ref.update (Haskell "Heap.writeSTRef") diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/Relational.thy --- a/src/HOL/Imperative_HOL/Relational.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/Relational.thy Tue Jul 06 10:02:24 2010 +0200 @@ -91,29 +91,29 @@ subsection {* Elimination rules for array commands *} lemma crel_length: - assumes "crel (length a) h h' r" - obtains "h = h'" "r = Heap.length a h'" + assumes "crel (len a) h h' r" + obtains "h = h'" "r = Array.length a h'" using assms - unfolding length_def + unfolding Array.len_def by (elim crel_heap) simp (* Strong version of the lemma for this operation is missing *) lemma crel_new_weak: assumes "crel (Array.new n v) h h' r" obtains "get_array r h' = List.replicate n v" - using assms unfolding Array.new_def - by (elim crel_heap) (auto simp:Heap.array_def Let_def split_def) + using assms unfolding Array.new_def + by (elim crel_heap) (auto simp: array_def Let_def split_def) lemma crel_nth[consumes 1]: assumes "crel (nth a i) h h' r" - obtains "r = (get_array a h) ! i" "h = h'" "i < Heap.length a h" + obtains "r = (get_array a h) ! i" "h = h'" "i < Array.length a h" using assms unfolding nth_def by (auto elim!: crelE crel_if crel_raise crel_length crel_heap) lemma crel_upd[consumes 1]: assumes "crel (upd i v a) h h' r" - obtains "r = a" "h' = Heap.upd a i v h" + obtains "r = a" "h' = Array.change a i v h" using assms unfolding upd_def by (elim crelE crel_if crel_return crel_raise @@ -129,14 +129,14 @@ lemma crel_map_entry: assumes "crel (Array.map_entry i f a) h h' r" - obtains "r = a" "h' = Heap.upd a i (f (get_array a h ! i)) h" + obtains "r = a" "h' = Array.change a i (f (get_array a h ! i)) h" using assms unfolding Array.map_entry_def by (elim crelE crel_upd crel_nth) auto lemma crel_swap: assumes "crel (Array.swap i x a) h h' r" - obtains "r = get_array a h ! i" "h' = Heap.upd a i x h" + obtains "r = get_array a h ! i" "h' = Array.change a i x h" using assms unfolding Array.swap_def by (elim crelE crel_upd crel_nth crel_return) auto @@ -160,25 +160,25 @@ lemma crel_mapM_nth: assumes - "crel (mapM (Array.nth a) [Heap.length a h - n.. Heap.length a h" - shows "h = h' \ xs = drop (Heap.length a h - n) (get_array a h)" + "crel (mapM (Array.nth a) [Array.length a h - n.. Array.length a h" + shows "h = h' \ xs = drop (Array.length a h - n) (get_array a h)" using assms proof (induct n arbitrary: xs h h') case 0 thus ?case - by (auto elim!: crel_return simp add: Heap.length_def) + by (auto elim!: crel_return simp add: Array.length_def) next case (Suc n) - from Suc(3) have "[Heap.length a h - Suc n..n. map_entry n f a) [Heap.length a h - n..n. map_entry n f a) [Array.length a h - n..n. map_entry n f a) [Heap.length a h - n..n. map_entry n f a) [Array.length a h - n..n. map_entry n f a) [Heap.length a ?h1 - n..n. map_entry n f a) [Array.length a ?h1 - n..n. map_entry n f a) [Heap.length a h - n.. Heap.length a h" - assumes "i \ Heap.length a h - n" - assumes "i < Heap.length a h" + assumes "crel (mapM (\n. map_entry n f a) [Array.length a h - n.. Array.length a h" + assumes "i \ Array.length a h - n" + assumes "i < Array.length a h" shows "get_array a h' ! i = f (get_array a h ! i)" using assms proof (induct n arbitrary: h h' r) @@ -230,54 +230,54 @@ by (auto elim!: crel_return) next case (Suc n) - let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h" - from Suc(3) have "[Heap.length a h - Suc n..n. map_entry n f a) [Heap.length a h - n..n. map_entry n f a) [Array.length a h - n.. i \ Heap.length a ?h1 - n" by arith - from crel_mapM have crel_mapM': "crel (mapM (\n. map_entry n f a) [Heap.length a ?h1 - n.. i \ Array.length a ?h1 - n" by arith + from crel_mapM have crel_mapM': "crel (mapM (\n. map_entry n f a) [Array.length a ?h1 - n..n. map_entry n f a) [Heap.length a h - n.. Heap.length a h" - shows "Heap.length a h' = Heap.length a h" + assumes "crel (mapM (\n. map_entry n f a) [Array.length a h - n.. Array.length a h" + shows "Array.length a h' = Array.length a h" using assms proof (induct n arbitrary: h h' r) case 0 thus ?case by (auto elim!: crel_return) next case (Suc n) - let ?h1 = "Heap.upd a (Heap.length a h - Suc n) (f (get_array a h ! (Heap.length a h - Suc n))) h" - from Suc(3) have "[Heap.length a h - Suc n..n. map_entry n f a) [Heap.length a h - n..n. map_entry n f a) [Array.length a h - n..n. map_entry n f a) [Heap.length a ?h1 - n..n. map_entry n f a) [Array.length a ?h1 - n..n. map_entry n f a) [0..n. map_entry n f a) [0..n. map_entry n f a) [Heap.length a h - Heap.length a h..n. map_entry n f a) [Array.length a h - Array.length a h.. lim h' = Suc (lim h) *) -lemma crel_Ref_new: - assumes "crel (Ref.new v) h h' x" - obtains "get_ref x h' = v" - and "\ ref_present x h" - and "ref_present x h'" - and "\y. ref_present y h \ get_ref y h = get_ref y h'" +lemma crel_ref: + assumes "crel (ref v) h h' x" + obtains "Ref.get h' x = v" + and "\ Ref.present h x" + and "Ref.present h' x" + and "\y. Ref.present h y \ Ref.get h y = Ref.get h' y" (* and "lim h' = Suc (lim h)" *) - and "\y. ref_present y h \ ref_present y h'" + and "\y. Ref.present h y \ Ref.present h' y" using assms - unfolding Ref.new_def + unfolding Ref.ref_def apply (elim crel_heap) - unfolding Heap.ref_def + unfolding Ref.alloc_def apply (simp add: Let_def) - unfolding Heap.new_ref_def - apply (simp add: Let_def) - unfolding ref_present_def + unfolding Ref.present_def apply auto - unfolding get_ref_def set_ref_def + unfolding Ref.get_def Ref.set_def apply auto done lemma crel_lookup: - assumes "crel (!ref) h h' r" - obtains "h = h'" "r = get_ref ref h" + assumes "crel (!r') h h' r" + obtains "h = h'" "r = Ref.get h r'" using assms unfolding Ref.lookup_def by (auto elim: crel_heap) lemma crel_update: - assumes "crel (ref := v) h h' r" - obtains "h' = set_ref ref v h" "r = ()" + assumes "crel (r' := v) h h' r" + obtains "h' = Ref.set r' v h" "r = ()" using assms unfolding Ref.update_def by (auto elim: crel_heap) lemma crel_change: - assumes "crel (Ref.change f ref) h h' r" - obtains "h' = set_ref ref (f (get_ref ref h)) h" "r = f (get_ref ref h)" + assumes "crel (Ref.change f r') h h' r" + obtains "h' = Ref.set r' (f (Ref.get h r')) h" "r = f (Ref.get h r')" using assms unfolding Ref.change_def Let_def by (auto elim!: crelE crel_lookup crel_update crel_return) @@ -433,22 +431,22 @@ subsection {* Introduction rules for array commands *} lemma crel_lengthI: - shows "crel (length a) h h (Heap.length a h)" - unfolding length_def + shows "crel (Array.len a) h h (Array.length a h)" + unfolding len_def by (rule crel_heapI') auto (* thm crel_newI for Array.new is missing *) lemma crel_nthI: - assumes "i < Heap.length a h" + assumes "i < Array.length a h" shows "crel (nth a i) h h ((get_array a h) ! i)" using assms unfolding nth_def by (auto intro!: crelI crel_ifI crel_raiseI crel_lengthI crel_heapI') lemma crel_updI: - assumes "i < Heap.length a h" - shows "crel (upd i v a) h (Heap.upd a i v h) a" + assumes "i < Array.length a h" + shows "crel (upd i v a) h (Array.change a i v h) a" using assms unfolding upd_def by (auto intro!: crelI crel_ifI crel_returnI crel_raiseI @@ -469,15 +467,15 @@ subsubsection {* Introduction rules for reference commands *} lemma crel_lookupI: - shows "crel (!ref) h h (get_ref ref h)" + shows "crel (!r) h h (Ref.get h r)" unfolding lookup_def by (auto intro!: crel_heapI') lemma crel_updateI: - shows "crel (ref := v) h (set_ref ref v h) ()" + shows "crel (r := v) h (Ref.set r v h) ()" unfolding update_def by (auto intro!: crel_heapI') lemma crel_changeI: - shows "crel (Ref.change f ref) h (set_ref ref (f (get_ref ref h)) h) (f (get_ref ref h))" + shows "crel (Ref.change f r) h (Ref.set r (f (Ref.get h r)) h) (f (Ref.get h r))" unfolding change_def Let_def by (auto intro!: crelI crel_returnI crel_lookupI crel_updateI) subsubsection {* Introduction rules for the assert command *} @@ -589,8 +587,8 @@ subsection {* Introduction rules for array commands *} lemma noError_length: - shows "noError (Array.length a) h" - unfolding length_def + shows "noError (Array.len a) h" + unfolding len_def by (intro noError_heap) lemma noError_new: @@ -598,14 +596,14 @@ unfolding Array.new_def by (intro noError_heap) lemma noError_upd: - assumes "i < Heap.length a h" + assumes "i < Array.length a h" shows "noError (Array.upd i v a) h" using assms unfolding upd_def by (auto intro!: noErrorI noError_if noError_return noError_length noError_heap) (auto elim: crel_length) lemma noError_nth: -assumes "i < Heap.length a h" +assumes "i < Array.length a h" shows "noError (Array.nth a i) h" using assms unfolding nth_def @@ -616,14 +614,14 @@ unfolding of_list_def by (rule noError_heap) lemma noError_map_entry: - assumes "i < Heap.length a h" + assumes "i < Array.length a h" shows "noError (map_entry i f a) h" using assms unfolding map_entry_def by (auto elim: crel_nth intro!: noErrorI noError_nth noError_upd) lemma noError_swap: - assumes "i < Heap.length a h" + assumes "i < Array.length a h" shows "noError (swap i x a) h" using assms unfolding swap_def @@ -646,42 +644,42 @@ noError_nth crel_nthI elim: crel_length) lemma noError_mapM_map_entry: - assumes "n \ Heap.length a h" - shows "noError (mapM (\n. map_entry n f a) [Heap.length a h - n.. Array.length a h" + shows "noError (mapM (\n. map_entry n f a) [Array.length a h - n.. nat \ nat \ nat \ nat Heap" where @@ -101,7 +101,7 @@ lemma part_length_remains: assumes "crel (part1 a l r p) h h' rs" - shows "Heap.length a h = Heap.length a h'" + shows "Array.length a h = Array.length a h'" using assms proof (induct a l r p arbitrary: h h' rs rule:part1.induct) case (1 a l r p h h' rs) @@ -207,7 +207,7 @@ by (elim crelE crel_nth crel_if crel_return) auto from swp False have "get_array a h1 ! r \ p" unfolding swap_def - by (auto simp add: Heap.length_def elim!: crelE crel_nth crel_upd crel_return) + by (auto simp add: Array.length_def elim!: crelE crel_nth crel_upd crel_return) with part_outer_remains [OF rec2] lr have a_r: "get_array a h' ! r \ p" by fastsimp have "\i. (i \ r = (i = r \ i \ r - 1))" by arith @@ -243,7 +243,7 @@ lemma partition_length_remains: assumes "crel (partition a l r) h h' rs" - shows "Heap.length a h = Heap.length a h'" + shows "Array.length a h = Array.length a h'" proof - from assms part_length_remains show ?thesis unfolding partition.simps swap_def @@ -287,14 +287,14 @@ else middle)" unfolding partition.simps by (elim crelE crel_return crel_nth crel_if crel_upd) simp - from swap have h'_def: "h' = Heap.upd a r (get_array a h1 ! rs) - (Heap.upd a rs (get_array a h1 ! r) h1)" + from swap have h'_def: "h' = Array.change a r (get_array a h1 ! rs) + (Array.change a rs (get_array a h1 ! r) h1)" unfolding swap_def by (elim crelE crel_return crel_nth crel_upd) simp - from swap have in_bounds: "r < Heap.length a h1 \ rs < Heap.length a h1" + from swap have in_bounds: "r < Array.length a h1 \ rs < Array.length a h1" unfolding swap_def by (elim crelE crel_return crel_nth crel_upd) simp - from swap have swap_length_remains: "Heap.length a h1 = Heap.length a h'" + from swap have swap_length_remains: "Array.length a h1 = Array.length a h'" unfolding swap_def by (elim crelE crel_return crel_nth crel_upd) auto from `l < r` have "l \ r - 1" by simp note middle_in_bounds = part_returns_index_in_bounds[OF part this] @@ -304,7 +304,7 @@ with swap have right_remains: "get_array a h ! r = get_array a h' ! rs" unfolding swap_def - by (auto simp add: Heap.length_def elim!: crelE crel_return crel_nth crel_upd) (cases "r = rs", auto) + by (auto simp add: Array.length_def elim!: crelE crel_return crel_nth crel_upd) (cases "r = rs", auto) from part_partitions [OF part] show ?thesis proof (cases "get_array a h1 ! middle \ ?pivot") @@ -314,12 +314,12 @@ fix i assume i_is_left: "l \ i \ i < rs" with swap_length_remains in_bounds middle_in_bounds rs_equals `l < r` - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto + have i_props: "i < Array.length a h'" "i \ r" "i \ rs" by auto from i_is_left rs_equals have "l \ i \ i < middle \ i = middle" by arith with part_partitions[OF part] right_remains True have "get_array a h1 ! i \ get_array a h' ! rs" by fastsimp with i_props h'_def in_bounds have "get_array a h' ! i \ get_array a h' ! rs" - unfolding Heap.upd_def Heap.length_def by simp + unfolding Array.change_def Array.length_def by simp } moreover { @@ -331,7 +331,7 @@ proof assume i_is: "rs < i \ i \ r - 1" with swap_length_remains in_bounds middle_in_bounds rs_equals - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto + have i_props: "i < Array.length a h'" "i \ r" "i \ rs" by auto from part_partitions[OF part] rs_equals right_remains i_is have "get_array a h' ! rs \ get_array a h1 ! i" by fastsimp @@ -345,7 +345,7 @@ by fastsimp with i_is True rs_equals right_remains h'_def show ?thesis using in_bounds - unfolding Heap.upd_def Heap.length_def + unfolding Array.change_def Array.length_def by auto qed } @@ -357,11 +357,11 @@ fix i assume i_is_left: "l \ i \ i < rs" with swap_length_remains in_bounds middle_in_bounds rs_equals - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto + have i_props: "i < Array.length a h'" "i \ r" "i \ rs" by auto from part_partitions[OF part] rs_equals right_remains i_is_left have "get_array a h1 ! i \ get_array a h' ! rs" by fastsimp with i_props h'_def have "get_array a h' ! i \ get_array a h' ! rs" - unfolding Heap.upd_def by simp + unfolding Array.change_def by simp } moreover { @@ -372,7 +372,7 @@ proof assume i_is: "rs < i \ i \ r - 1" with swap_length_remains in_bounds middle_in_bounds rs_equals - have i_props: "i < Heap.length a h'" "i \ r" "i \ rs" by auto + have i_props: "i < Array.length a h'" "i \ r" "i \ rs" by auto from part_partitions[OF part] rs_equals right_remains i_is have "get_array a h' ! rs \ get_array a h1 ! i" by fastsimp @@ -381,7 +381,7 @@ assume i_is: "i = r" from i_is False rs_equals right_remains h'_def show ?thesis using in_bounds - unfolding Heap.upd_def Heap.length_def + unfolding Array.change_def Array.length_def by auto qed } @@ -425,7 +425,7 @@ lemma length_remains: assumes "crel (quicksort a l r) h h' rs" - shows "Heap.length a h = Heap.length a h'" + shows "Array.length a h = Array.length a h'" using assms proof (induct a l r arbitrary: h h' rs rule: quicksort.induct) case (1 a l r h h' rs) @@ -482,7 +482,7 @@ lemma quicksort_sorts: assumes "crel (quicksort a l r) h h' rs" - assumes l_r_length: "l < Heap.length a h" "r < Heap.length a h" + assumes l_r_length: "l < Array.length a h" "r < Array.length a h" shows "sorted (subarray l (r + 1) a h')" using assms proof (induct a l r arbitrary: h h' rs rule: quicksort.induct) @@ -524,7 +524,7 @@ from quicksort_outer_remains [OF qs1] quicksort_permutes [OF qs1] True length_remains 1(5) pivot multiset_of_sublist [of l p "get_array a h1" "get_array a h2"] have multiset_partconds1: "multiset_of (subarray l p a h2) = multiset_of (subarray l p a h1)" - unfolding Heap.length_def subarray_def by (cases p, auto) + unfolding Array.length_def subarray_def by (cases p, auto) with left_subarray_remains part_conds1 pivot_unchanged have part_conds2': "\j. j \ set (subarray l p a h') \ j \ get_array a h' ! p" by (simp, subst set_of_multiset_of[symmetric], simp) @@ -535,7 +535,7 @@ from quicksort_outer_remains [OF qs2] quicksort_permutes [OF qs2] True length_remains 1(5) pivot multiset_of_sublist [of "p + 1" "r + 1" "get_array a h2" "get_array a h'"] have multiset_partconds2: "multiset_of (subarray (p + 1) (r + 1) a h') = multiset_of (subarray (p + 1) (r + 1) a h2)" - unfolding Heap.length_def subarray_def by auto + unfolding Array.length_def subarray_def by auto with right_subarray_remains part_conds2 pivot_unchanged have part_conds1': "\j. j \ set (subarray (p + 1) (r + 1) a h') \ get_array a h' ! p \ j" by (simp, subst set_of_multiset_of[symmetric], simp) @@ -556,18 +556,18 @@ lemma quicksort_is_sort: - assumes crel: "crel (quicksort a 0 (Heap.length a h - 1)) h h' rs" + assumes crel: "crel (quicksort a 0 (Array.length a h - 1)) h h' rs" shows "get_array a h' = sort (get_array a h)" proof (cases "get_array a h = []") case True with quicksort_is_skip[OF crel] show ?thesis - unfolding Heap.length_def by simp + unfolding Array.length_def by simp next case False from quicksort_sorts [OF crel] False have "sorted (sublist' 0 (List.length (get_array a h)) (get_array a h'))" - unfolding Heap.length_def subarray_def by auto + unfolding Array.length_def subarray_def by auto with length_remains[OF crel] have "sorted (get_array a h')" - unfolding Heap.length_def by simp + unfolding Array.length_def by simp with quicksort_permutes [OF crel] properties_for_sort show ?thesis by fastsimp qed @@ -576,7 +576,7 @@ We will now show that exceptions do not occur. *} lemma noError_part1: - assumes "l < Heap.length a h" "r < Heap.length a h" + assumes "l < Array.length a h" "r < Array.length a h" shows "noError (part1 a l r p) h" using assms proof (induct a l r p arbitrary: h rule: part1.induct) @@ -587,7 +587,7 @@ qed lemma noError_partition: - assumes "l < r" "l < Heap.length a h" "r < Heap.length a h" + assumes "l < r" "l < Array.length a h" "r < Array.length a h" shows "noError (partition a l r) h" using assms unfolding partition.simps swap_def @@ -603,7 +603,7 @@ done lemma noError_quicksort: - assumes "l < Heap.length a h" "r < Heap.length a h" + assumes "l < Array.length a h" "r < Array.length a h" shows "noError (quicksort a l r) h" using assms proof (induct a l r arbitrary: h rule: quicksort.induct) @@ -628,7 +628,7 @@ subsection {* Example *} definition "qsort a = do - k \ length a; + k \ len a; quicksort a 0 (k - 1); return a done" diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/ex/Imperative_Reverse.thy --- a/src/HOL/Imperative_HOL/ex/Imperative_Reverse.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/ex/Imperative_Reverse.thy Tue Jul 06 10:02:24 2010 +0200 @@ -37,7 +37,7 @@ else get_array a h ! k)" using assms unfolding swap.simps by (elim crel_elim_all) - (auto simp: Heap.length_def) + (auto simp: length_def) lemma rev_pointwise: assumes "crel (rev a i j) h h' r" shows "get_array a h' ! k = (if k < i then get_array a h ! k @@ -69,7 +69,7 @@ lemma rev_length: assumes "crel (rev a i j) h h' r" - shows "Heap.length a h = Heap.length a h'" + shows "Array.length a h = Array.length a h'" using assms proof (induct a i j arbitrary: h h' rule: rev.induct) case (1 a i j h h'') @@ -93,7 +93,7 @@ qed lemma rev2_rev': assumes "crel (rev a i j) h h' u" - assumes "j < Heap.length a h" + assumes "j < Array.length a h" shows "subarray i (j + 1) a h' = List.rev (subarray i (j + 1) a h)" proof - { @@ -103,15 +103,15 @@ by auto } with assms(2) rev_length[OF assms(1)] show ?thesis - unfolding subarray_def Heap.length_def + unfolding subarray_def Array.length_def by (auto simp add: length_sublist' rev_nth min_def nth_sublist' intro!: nth_equalityI) qed lemma rev2_rev: - assumes "crel (rev a 0 (Heap.length a h - 1)) h h' u" + assumes "crel (rev a 0 (Array.length a h - 1)) h h' u" shows "get_array a h' = List.rev (get_array a h)" using rev2_rev'[OF assms] rev_length[OF assms] assms - by (cases "Heap.length a h = 0", auto simp add: Heap.length_def + by (cases "Array.length a h = 0", auto simp add: Array.length_def subarray_def sublist'_all rev.simps[where j=0] elim!: crel_elim_all) (drule sym[of "List.length (get_array a h)"], simp) diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/ex/Linked_Lists.thy --- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy Tue Jul 06 10:02:24 2010 +0200 @@ -13,7 +13,7 @@ setup {* Sign.add_const_constraint (@{const_name Ref}, SOME @{typ "nat \ 'a\type ref"}) *} datatype 'a node = Empty | Node 'a "('a node) ref" -fun +primrec node_encode :: "'a\countable node \ nat" where "node_encode Empty = 0" @@ -28,11 +28,11 @@ instance node :: (heap) heap .. -fun make_llist :: "'a\heap list \ 'a node Heap" +primrec make_llist :: "'a\heap list \ 'a node Heap" where [simp del]: "make_llist [] = return Empty" | "make_llist (x#xs) = do tl \ make_llist xs; - next \ Ref.new tl; + next \ ref tl; return (Node x next) done" @@ -63,24 +63,24 @@ subsection {* Definition of list_of, list_of', refs_of and refs_of' *} -fun list_of :: "heap \ ('a::heap) node \ 'a list \ bool" +primrec list_of :: "heap \ ('a::heap) node \ 'a list \ bool" where "list_of h r [] = (r = Empty)" -| "list_of h r (a#as) = (case r of Empty \ False | Node b bs \ (a = b \ list_of h (get_ref bs h) as))" +| "list_of h r (a#as) = (case r of Empty \ False | Node b bs \ (a = b \ list_of h (Ref.get h bs) as))" definition list_of' :: "heap \ ('a::heap) node ref \ 'a list \ bool" where - "list_of' h r xs = list_of h (get_ref r h) xs" + "list_of' h r xs = list_of h (Ref.get h r) xs" -fun refs_of :: "heap \ ('a::heap) node \ 'a node ref list \ bool" +primrec refs_of :: "heap \ ('a::heap) node \ 'a node ref list \ bool" where "refs_of h r [] = (r = Empty)" -| "refs_of h r (x#xs) = (case r of Empty \ False | Node b bs \ (x = bs) \ refs_of h (get_ref bs h) xs)" +| "refs_of h r (x#xs) = (case r of Empty \ False | Node b bs \ (x = bs) \ refs_of h (Ref.get h bs) xs)" -fun refs_of' :: "heap \ ('a::heap) node ref \ 'a node ref list \ bool" +primrec refs_of' :: "heap \ ('a::heap) node ref \ 'a node ref list \ bool" where "refs_of' h r [] = False" -| "refs_of' h r (x#xs) = ((x = r) \ refs_of h (get_ref x h) xs)" +| "refs_of' h r (x#xs) = ((x = r) \ refs_of h (Ref.get h x) xs)" subsection {* Properties of these definitions *} @@ -88,35 +88,35 @@ lemma list_of_Empty[simp]: "list_of h Empty xs = (xs = [])" by (cases xs, auto) -lemma list_of_Node[simp]: "list_of h (Node x ps) xs = (\xs'. (xs = x # xs') \ list_of h (get_ref ps h) xs')" +lemma list_of_Node[simp]: "list_of h (Node x ps) xs = (\xs'. (xs = x # xs') \ list_of h (Ref.get h ps) xs')" by (cases xs, auto) -lemma list_of'_Empty[simp]: "get_ref q h = Empty \ list_of' h q xs = (xs = [])" +lemma list_of'_Empty[simp]: "Ref.get h q = Empty \ list_of' h q xs = (xs = [])" unfolding list_of'_def by simp -lemma list_of'_Node[simp]: "get_ref q h = Node x ps \ list_of' h q xs = (\xs'. (xs = x # xs') \ list_of' h ps xs')" +lemma list_of'_Node[simp]: "Ref.get h q = Node x ps \ list_of' h q xs = (\xs'. (xs = x # xs') \ list_of' h ps xs')" unfolding list_of'_def by simp -lemma list_of'_Nil: "list_of' h q [] \ get_ref q h = Empty" +lemma list_of'_Nil: "list_of' h q [] \ Ref.get h q = Empty" unfolding list_of'_def by simp lemma list_of'_Cons: assumes "list_of' h q (x#xs)" -obtains n where "get_ref q h = Node x n" and "list_of' h n xs" +obtains n where "Ref.get h q = Node x n" and "list_of' h n xs" using assms unfolding list_of'_def by (auto split: node.split_asm) lemma refs_of_Empty[simp] : "refs_of h Empty xs = (xs = [])" by (cases xs, auto) -lemma refs_of_Node[simp]: "refs_of h (Node x ps) xs = (\prs. xs = ps # prs \ refs_of h (get_ref ps h) prs)" +lemma refs_of_Node[simp]: "refs_of h (Node x ps) xs = (\prs. xs = ps # prs \ refs_of h (Ref.get h ps) prs)" by (cases xs, auto) -lemma refs_of'_def': "refs_of' h p ps = (\prs. (ps = (p # prs)) \ refs_of h (get_ref p h) prs)" +lemma refs_of'_def': "refs_of' h p ps = (\prs. (ps = (p # prs)) \ refs_of h (Ref.get h p) prs)" by (cases ps, auto) lemma refs_of'_Node: assumes "refs_of' h p xs" - assumes "get_ref p h = Node x pn" + assumes "Ref.get h p = Node x pn" obtains pnrs where "xs = p # pnrs" and "refs_of' h pn pnrs" using assms @@ -166,7 +166,7 @@ assumes "list_of' h r xs" shows "\rs. refs_of' h r rs" proof - - from assms obtain rs' where "refs_of h (get_ref r h) rs'" + from assms obtain rs' where "refs_of h (Ref.get h r) rs'" unfolding list_of'_def by (rule list_of_refs_of) thus ?thesis unfolding refs_of'_def' by auto qed @@ -238,7 +238,7 @@ done lemma refs_of_next: -assumes "refs_of h (get_ref p h) rs" +assumes "refs_of h (Ref.get h p) rs" shows "p \ set rs" proof (rule ccontr) assume a: "\ (p \ set rs)" @@ -264,7 +264,7 @@ subsection {* Interaction of these predicates with our heap transitions *} -lemma list_of_set_ref: "refs_of h q rs \ p \ set rs \ list_of (set_ref p v h) q as = list_of h q as" +lemma list_of_set_ref: "refs_of h q rs \ p \ set rs \ list_of (Ref.set p v h) q as = list_of h q as" using assms proof (induct as arbitrary: q rs) case Nil thus ?case by simp @@ -275,15 +275,15 @@ case Empty thus ?thesis by auto next case (Node a ref) - from Cons(2) Node obtain rs' where 1: "refs_of h (get_ref ref h) rs'" and rs_rs': "rs = ref # rs'" by auto + from Cons(2) Node obtain rs' where 1: "refs_of h (Ref.get h ref) rs'" and rs_rs': "rs = ref # rs'" by auto from Cons(3) rs_rs' have "ref \ p" by fastsimp - hence ref_eq: "get_ref ref (set_ref p v h) = (get_ref ref h)" by (auto simp add: ref_get_set_neq) + hence ref_eq: "Ref.get (Ref.set p v h) ref = (Ref.get h ref)" by (auto simp add: Ref.get_set_neq) from rs_rs' Cons(3) have 2: "p \ set rs'" by simp from Cons.hyps[OF 1 2] Node ref_eq show ?thesis by simp qed qed -lemma refs_of_set_ref: "refs_of h q rs \ p \ set rs \ refs_of (set_ref p v h) q as = refs_of h q as" +lemma refs_of_set_ref: "refs_of h q rs \ p \ set rs \ refs_of (Ref.set p v h) q as = refs_of h q as" proof (induct as arbitrary: q rs) case Nil thus ?case by simp next @@ -293,15 +293,15 @@ case Empty thus ?thesis by auto next case (Node a ref) - from Cons(2) Node obtain rs' where 1: "refs_of h (get_ref ref h) rs'" and rs_rs': "rs = ref # rs'" by auto + from Cons(2) Node obtain rs' where 1: "refs_of h (Ref.get h ref) rs'" and rs_rs': "rs = ref # rs'" by auto from Cons(3) rs_rs' have "ref \ p" by fastsimp - hence ref_eq: "get_ref ref (set_ref p v h) = (get_ref ref h)" by (auto simp add: ref_get_set_neq) + hence ref_eq: "Ref.get (Ref.set p v h) ref = (Ref.get h ref)" by (auto simp add: Ref.get_set_neq) from rs_rs' Cons(3) have 2: "p \ set rs'" by simp from Cons.hyps[OF 1 2] Node ref_eq show ?thesis by auto qed qed -lemma refs_of_set_ref2: "refs_of (set_ref p v h) q rs \ p \ set rs \ refs_of (set_ref p v h) q rs = refs_of h q rs" +lemma refs_of_set_ref2: "refs_of (Ref.set p v h) q rs \ p \ set rs \ refs_of (Ref.set p v h) q rs = refs_of h q rs" proof (induct rs arbitrary: q) case Nil thus ?case by simp next @@ -311,9 +311,9 @@ case Empty thus ?thesis by auto next case (Node a ref) - from Cons(2) Node have 1:"refs_of (set_ref p v h) (get_ref ref (set_ref p v h)) xs" and x_ref: "x = ref" by auto + from Cons(2) Node have 1:"refs_of (Ref.set p v h) (Ref.get (Ref.set p v h) ref) xs" and x_ref: "x = ref" by auto from Cons(3) this have "ref \ p" by fastsimp - hence ref_eq: "get_ref ref (set_ref p v h) = (get_ref ref h)" by (auto simp add: ref_get_set_neq) + hence ref_eq: "Ref.get (Ref.set p v h) ref = (Ref.get h ref)" by (auto simp add: Ref.get_set_neq) from Cons(3) have 2: "p \ set xs" by simp with Cons.hyps 1 2 Node ref_eq show ?thesis by simp @@ -323,7 +323,7 @@ lemma list_of'_set_ref: assumes "refs_of' h q rs" assumes "p \ set rs" - shows "list_of' (set_ref p v h) q as = list_of' h q as" + shows "list_of' (Ref.set p v h) q as = list_of' h q as" proof - from assms have "q \ p" by (auto simp only: dest!: refs_of'E) with assms show ?thesis @@ -333,18 +333,18 @@ lemma list_of'_set_next_ref_Node[simp]: assumes "list_of' h r xs" - assumes "get_ref p h = Node x r'" + assumes "Ref.get h p = Node x r'" assumes "refs_of' h r rs" assumes "p \ set rs" - shows "list_of' (set_ref p (Node x r) h) p (x#xs) = list_of' h r xs" + shows "list_of' (Ref.set p (Node x r) h) p (x#xs) = list_of' h r xs" using assms unfolding list_of'_def refs_of'_def' -by (auto simp add: list_of_set_ref noteq_refs_sym) +by (auto simp add: list_of_set_ref Ref.noteq_sym) lemma refs_of'_set_ref: assumes "refs_of' h q rs" assumes "p \ set rs" - shows "refs_of' (set_ref p v h) q as = refs_of' h q as" + shows "refs_of' (Ref.set p v h) q as = refs_of' h q as" using assms proof - from assms have "q \ p" by (auto simp only: dest!: refs_of'E) @@ -354,9 +354,9 @@ qed lemma refs_of'_set_ref2: - assumes "refs_of' (set_ref p v h) q rs" + assumes "refs_of' (Ref.set p v h) q rs" assumes "p \ set rs" - shows "refs_of' (set_ref p v h) q as = refs_of' h q as" + shows "refs_of' (Ref.set p v h) q as = refs_of' h q as" using assms proof - from assms have "q \ p" by (auto simp only: dest!: refs_of'E) @@ -364,7 +364,7 @@ unfolding refs_of'_def' apply auto apply (subgoal_tac "prs = prsa") - apply (insert refs_of_set_ref2[of p v h "get_ref q h"]) + apply (insert refs_of_set_ref2[of p v h "Ref.get h q"]) apply (erule_tac x="prs" in meta_allE) apply auto apply (auto dest: refs_of_is_fun) @@ -372,15 +372,15 @@ qed lemma refs_of'_set_next_ref: -assumes "get_ref p h1 = Node x pn" -assumes "refs_of' (set_ref p (Node x r1) h1) p rs" +assumes "Ref.get h1 p = Node x pn" +assumes "refs_of' (Ref.set p (Node x r1) h1) p rs" obtains r1s where "rs = (p#r1s)" and "refs_of' h1 r1 r1s" using assms proof - from assms refs_of'_distinct[OF assms(2)] have "\ r1s. rs = (p # r1s) \ refs_of' h1 r1 r1s" apply - unfolding refs_of'_def'[of _ p] - apply (auto, frule refs_of_set_ref2) by (auto dest: noteq_refs_sym) + apply (auto, frule refs_of_set_ref2) by (auto dest: Ref.noteq_sym) with prems show thesis by auto qed @@ -388,7 +388,7 @@ lemma refs_of_invariant: assumes "refs_of h (r::('a::heap) node) xs" - assumes "\refs. refs_of h r refs \ (\ref \ set refs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h')" + assumes "\refs. refs_of h r refs \ (\ref \ set refs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref)" shows "refs_of h' r xs" using assms proof (induct xs arbitrary: r) @@ -396,28 +396,28 @@ next case (Cons x xs') from Cons(2) obtain v where Node: "r = Node v x" by (cases r, auto) - from Cons(2) Node have refs_of_next: "refs_of h (get_ref x h) xs'" by simp - from Cons(2-3) Node have ref_eq: "get_ref x h = get_ref x h'" by auto - from ref_eq refs_of_next have 1: "refs_of h (get_ref x h') xs'" by simp - from Cons(2) Cons(3) have "\ref \ set xs'. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h'" + from Cons(2) Node have refs_of_next: "refs_of h (Ref.get h x) xs'" by simp + from Cons(2-3) Node have ref_eq: "Ref.get h x = Ref.get h' x" by auto + from ref_eq refs_of_next have 1: "refs_of h (Ref.get h' x) xs'" by simp + from Cons(2) Cons(3) have "\ref \ set xs'. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref" by fastsimp - with Cons(3) 1 have 2: "\refs. refs_of h (get_ref x h') refs \ (\ref \ set refs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h')" + with Cons(3) 1 have 2: "\refs. refs_of h (Ref.get h' x) refs \ (\ref \ set refs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref)" by (fastsimp dest: refs_of_is_fun) - from Cons.hyps[OF 1 2] have "refs_of h' (get_ref x h') xs'" . + from Cons.hyps[OF 1 2] have "refs_of h' (Ref.get h' x) xs'" . with Node show ?case by simp qed lemma refs_of'_invariant: assumes "refs_of' h r xs" - assumes "\refs. refs_of' h r refs \ (\ref \ set refs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h')" + assumes "\refs. refs_of' h r refs \ (\ref \ set refs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref)" shows "refs_of' h' r xs" using assms proof - - from assms obtain prs where refs:"refs_of h (get_ref r h) prs" and xs_def: "xs = r # prs" + from assms obtain prs where refs:"refs_of h (Ref.get h r) prs" and xs_def: "xs = r # prs" unfolding refs_of'_def' by auto - from xs_def assms have x_eq: "get_ref r h = get_ref r h'" by fastsimp - from refs assms xs_def have 2: "\refs. refs_of h (get_ref r h) refs \ - (\ref\set refs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h')" + from xs_def assms have x_eq: "Ref.get h r = Ref.get h' r" by fastsimp + from refs assms xs_def have 2: "\refs. refs_of h (Ref.get h r) refs \ + (\ref\set refs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref)" by (fastsimp dest: refs_of_is_fun) from refs_of_invariant [OF refs 2] xs_def x_eq show ?thesis unfolding refs_of'_def' by auto @@ -425,7 +425,7 @@ lemma list_of_invariant: assumes "list_of h (r::('a::heap) node) xs" - assumes "\refs. refs_of h r refs \ (\ref \ set refs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h')" + assumes "\refs. refs_of h r refs \ (\ref \ set refs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref)" shows "list_of h' r xs" using assms proof (induct xs arbitrary: r) @@ -437,16 +437,16 @@ by (cases r, auto) from Cons(2) obtain rs where rs_def: "refs_of h r rs" by (rule list_of_refs_of) from Node rs_def obtain rss where refs_of: "refs_of h r (ref#rss)" and rss_def: "rs = ref#rss" by auto - from Cons(3) Node refs_of have ref_eq: "get_ref ref h = get_ref ref h'" + from Cons(3) Node refs_of have ref_eq: "Ref.get h ref = Ref.get h' ref" by auto - from Cons(2) ref_eq Node have 1: "list_of h (get_ref ref h') xs'" by simp - from refs_of Node ref_eq have refs_of_ref: "refs_of h (get_ref ref h') rss" by simp - from Cons(3) rs_def have rs_heap_eq: "\ref\set rs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h'" by simp - from refs_of_ref rs_heap_eq rss_def have 2: "\refs. refs_of h (get_ref ref h') refs \ - (\ref\set refs. ref_present ref h \ ref_present ref h' \ get_ref ref h = get_ref ref h')" + from Cons(2) ref_eq Node have 1: "list_of h (Ref.get h' ref) xs'" by simp + from refs_of Node ref_eq have refs_of_ref: "refs_of h (Ref.get h' ref) rss" by simp + from Cons(3) rs_def have rs_heap_eq: "\ref\set rs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref" by simp + from refs_of_ref rs_heap_eq rss_def have 2: "\refs. refs_of h (Ref.get h' ref) refs \ + (\ref\set refs. Ref.present h ref \ Ref.present h' ref \ Ref.get h ref = Ref.get h' ref)" by (auto dest: refs_of_is_fun) from Cons(1)[OF 1 2] - have "list_of h' (get_ref ref h') xs'" . + have "list_of h' (Ref.get h' ref) xs'" . with Node show ?case unfolding list_of'_def by simp @@ -454,29 +454,29 @@ lemma make_llist: assumes "crel (make_llist xs) h h' r" -shows "list_of h' r xs \ (\rs. refs_of h' r rs \ (\ref \ (set rs). ref_present ref h'))" +shows "list_of h' r xs \ (\rs. refs_of h' r rs \ (\ref \ (set rs). Ref.present h' ref))" using assms proof (induct xs arbitrary: h h' r) case Nil thus ?case by (auto elim: crel_return simp add: make_llist.simps) next case (Cons x xs') from Cons.prems obtain h1 r1 r' where make_llist: "crel (make_llist xs') h h1 r1" - and crel_refnew:"crel (Ref.new r1) h1 h' r'" and Node: "r = Node x r'" + and crel_refnew:"crel (ref r1) h1 h' r'" and Node: "r = Node x r'" unfolding make_llist.simps by (auto elim!: crelE crel_return) from Cons.hyps[OF make_llist] have list_of_h1: "list_of h1 r1 xs'" .. from Cons.hyps[OF make_llist] obtain rs' where rs'_def: "refs_of h1 r1 rs'" by (auto intro: list_of_refs_of) - from Cons.hyps[OF make_llist] rs'_def have refs_present: "\ref\set rs'. ref_present ref h1" by simp + from Cons.hyps[OF make_llist] rs'_def have refs_present: "\ref\set rs'. Ref.present h1 ref" by simp from crel_refnew rs'_def refs_present have refs_unchanged: "\refs. refs_of h1 r1 refs \ - (\ref\set refs. ref_present ref h1 \ ref_present ref h' \ get_ref ref h1 = get_ref ref h')" - by (auto elim!: crel_Ref_new dest: refs_of_is_fun) + (\ref\set refs. Ref.present h1 ref \ Ref.present h' ref \ Ref.get h1 ref = Ref.get h' ref)" + by (auto elim!: crel_ref dest: refs_of_is_fun) with list_of_invariant[OF list_of_h1 refs_unchanged] Node crel_refnew have fstgoal: "list_of h' r (x # xs')" unfolding list_of.simps - by (auto elim!: crel_Ref_new) - from refs_unchanged rs'_def have refs_still_present: "\ref\set rs'. ref_present ref h'" by auto + by (auto elim!: crel_ref) + from refs_unchanged rs'_def have refs_still_present: "\ref\set rs'. Ref.present h' ref" by auto from refs_of_invariant[OF rs'_def refs_unchanged] refs_unchanged Node crel_refnew refs_still_present - have sndgoal: "\rs. refs_of h' r rs \ (\ref\set rs. ref_present ref h')" - by (fastsimp elim!: crel_Ref_new dest: refs_of_is_fun) + have sndgoal: "\rs. refs_of h' r rs \ (\ref\set rs. Ref.present h' ref)" + by (fastsimp elim!: crel_ref dest: refs_of_is_fun) from fstgoal sndgoal show ?case .. qed @@ -533,10 +533,10 @@ thm arg_cong2 by (auto simp add: expand_fun_eq intro: arg_cong2[where f = "op \="] split: node.split) -fun rev :: "('a:: heap) node \ 'a node Heap" +primrec rev :: "('a:: heap) node \ 'a node Heap" where "rev Empty = return Empty" -| "rev (Node x n) = (do q \ Ref.new Empty; p \ Ref.new (Node x n); v \ rev' (q, p); !v done)" +| "rev (Node x n) = (do q \ ref Empty; p \ ref (Node x n); v \ rev' (q, p); !v done)" subsection {* Correctness Proof *} @@ -556,17 +556,17 @@ case (Cons x xs) (*"LinkedList.list_of h' (get_ref v h') (List.rev xs @ x # qsa)"*) from Cons(4) obtain ref where - p_is_Node: "get_ref p h = Node x ref" + p_is_Node: "Ref.get h p = Node x ref" (*and "ref_present ref h"*) and list_of'_ref: "list_of' h ref xs" - unfolding list_of'_def by (cases "get_ref p h", auto) - from p_is_Node Cons(2) have crel_rev': "crel (rev' (p, ref)) (set_ref p (Node x q) h) h' v" + unfolding list_of'_def by (cases "Ref.get h p", auto) + from p_is_Node Cons(2) have crel_rev': "crel (rev' (p, ref)) (Ref.set p (Node x q) h) h' v" by (auto simp add: rev'_simps [of q p] elim!: crelE crel_lookup crel_update) from Cons(3) obtain qrs where qrs_def: "refs_of' h q qrs" by (elim list_of'_refs_of') from Cons(4) obtain prs where prs_def: "refs_of' h p prs" by (elim list_of'_refs_of') from qrs_def prs_def Cons(5) have distinct_pointers: "set qrs \ set prs = {}" by fastsimp from qrs_def prs_def distinct_pointers refs_of'E have p_notin_qrs: "p \ set qrs" by fastsimp - from Cons(3) qrs_def this have 1: "list_of' (set_ref p (Node x q) h) p (x#qs)" + from Cons(3) qrs_def this have 1: "list_of' (Ref.set p (Node x q) h) p (x#qs)" unfolding list_of'_def apply (simp) unfolding list_of'_def[symmetric] @@ -575,16 +575,16 @@ unfolding refs_of'_def' by auto from prs_refs prs_def have p_not_in_refs: "p \ set refs" by (fastsimp dest!: refs_of'_distinct) - with refs_def p_is_Node list_of'_ref have 2: "list_of' (set_ref p (Node x q) h) ref xs" + with refs_def p_is_Node list_of'_ref have 2: "list_of' (Ref.set p (Node x q) h) ref xs" by (auto simp add: list_of'_set_ref) - from p_notin_qrs qrs_def have refs_of1: "refs_of' (set_ref p (Node x q) h) p (p#qrs)" + from p_notin_qrs qrs_def have refs_of1: "refs_of' (Ref.set p (Node x q) h) p (p#qrs)" unfolding refs_of'_def' apply (simp) unfolding refs_of'_def'[symmetric] by (simp add: refs_of'_set_ref) - from p_not_in_refs p_is_Node refs_def have refs_of2: "refs_of' (set_ref p (Node x q) h) ref refs" + from p_not_in_refs p_is_Node refs_def have refs_of2: "refs_of' (Ref.set p (Node x q) h) ref refs" by (simp add: refs_of'_set_ref) - from p_not_in_refs refs_of1 refs_of2 distinct_pointers prs_refs have 3: "\qrs prs. refs_of' (set_ref p (Node x q) h) p qrs \ refs_of' (set_ref p (Node x q) h) ref prs \ set prs \ set qrs = {}" + from p_not_in_refs refs_of1 refs_of2 distinct_pointers prs_refs have 3: "\qrs prs. refs_of' (Ref.set p (Node x q) h) p qrs \ refs_of' (Ref.set p (Node x q) h) ref prs \ set prs \ set qrs = {}" apply - apply (rule allI)+ apply (rule impI) apply (erule conjE) apply (drule refs_of'_is_fun) back back apply assumption apply (drule refs_of'_is_fun) back back apply assumption @@ -595,7 +595,7 @@ lemma rev_correctness: assumes list_of_h: "list_of h r xs" - assumes validHeap: "\refs. refs_of h r refs \ (\r \ set refs. ref_present r h)" + assumes validHeap: "\refs. refs_of h r refs \ (\r \ set refs. Ref.present h r)" assumes crel_rev: "crel (rev r) h h' r'" shows "list_of h' r' (List.rev xs)" using assms @@ -606,39 +606,39 @@ next case (Node x ps) with crel_rev obtain p q h1 h2 h3 v where - init: "crel (Ref.new Empty) h h1 q" - "crel (Ref.new (Node x ps)) h1 h2 p" + init: "crel (ref Empty) h h1 q" + "crel (ref (Node x ps)) h1 h2 p" and crel_rev':"crel (rev' (q, p)) h2 h3 v" and lookup: "crel (!v) h3 h' r'" using rev.simps by (auto elim!: crelE) from init have a1:"list_of' h2 q []" unfolding list_of'_def - by (auto elim!: crel_Ref_new) + by (auto elim!: crel_ref) from list_of_h obtain refs where refs_def: "refs_of h r refs" by (rule list_of_refs_of) - from validHeap init refs_def have heap_eq: "\refs. refs_of h r refs \ (\ref\set refs. ref_present ref h \ ref_present ref h2 \ get_ref ref h = get_ref ref h2)" - by (fastsimp elim!: crel_Ref_new dest: refs_of_is_fun) + from validHeap init refs_def have heap_eq: "\refs. refs_of h r refs \ (\ref\set refs. Ref.present h ref \ Ref.present h2 ref \ Ref.get h ref = Ref.get h2 ref)" + by (fastsimp elim!: crel_ref dest: refs_of_is_fun) from list_of_invariant[OF list_of_h heap_eq] have "list_of h2 r xs" . from init this Node have a2: "list_of' h2 p xs" apply - unfolding list_of'_def - apply (auto elim!: crel_Ref_new) + apply (auto elim!: crel_ref) done from init have refs_of_q: "refs_of' h2 q [q]" - by (auto elim!: crel_Ref_new) + by (auto elim!: crel_ref) from refs_def Node have refs_of'_ps: "refs_of' h ps refs" by (auto simp add: refs_of'_def'[symmetric]) - from validHeap refs_def have all_ref_present: "\r\set refs. ref_present r h" by simp - from init refs_of'_ps Node this have heap_eq: "\refs. refs_of' h ps refs \ (\ref\set refs. ref_present ref h \ ref_present ref h2 \ get_ref ref h = get_ref ref h2)" - by (fastsimp elim!: crel_Ref_new dest: refs_of'_is_fun) + from validHeap refs_def have all_ref_present: "\r\set refs. Ref.present h r" by simp + from init refs_of'_ps Node this have heap_eq: "\refs. refs_of' h ps refs \ (\ref\set refs. Ref.present h ref \ Ref.present h2 ref \ Ref.get h ref = Ref.get h2 ref)" + by (fastsimp elim!: crel_ref dest: refs_of'_is_fun) from refs_of'_invariant[OF refs_of'_ps this] have "refs_of' h2 ps refs" . with init have refs_of_p: "refs_of' h2 p (p#refs)" - by (auto elim!: crel_Ref_new simp add: refs_of'_def') + by (auto elim!: crel_ref simp add: refs_of'_def') with init all_ref_present have q_is_new: "q \ set (p#refs)" - by (auto elim!: crel_Ref_new intro!: noteq_refsI) + by (auto elim!: crel_ref intro!: Ref.noteq_I) from refs_of_p refs_of_q q_is_new have a3: "\qrs prs. refs_of' h2 q qrs \ refs_of' h2 p prs \ set prs \ set qrs = {}" by (fastsimp simp only: set.simps dest: refs_of'_is_fun) - from rev'_invariant [OF crel_rev' a1 a2 a3] have "list_of h3 (get_ref v h3) (List.rev xs)" + from rev'_invariant [OF crel_rev' a1 a2 a3] have "list_of h3 (Ref.get h3 v) (List.rev xs)" unfolding list_of'_def by auto with lookup show ?thesis by (auto elim: crel_lookup) @@ -734,32 +734,32 @@ lemma merge_induct2: assumes "list_of' h (p::'a::{heap, ord} node ref) xs" assumes "list_of' h q ys" - assumes "\ ys p q. \ list_of' h p []; list_of' h q ys; get_ref p h = Empty \ \ P p q [] ys" - assumes "\ x xs' p q pn. \ list_of' h p (x#xs'); list_of' h q []; get_ref p h = Node x pn; get_ref q h = Empty \ \ P p q (x#xs') []" + assumes "\ ys p q. \ list_of' h p []; list_of' h q ys; Ref.get h p = Empty \ \ P p q [] ys" + assumes "\ x xs' p q pn. \ list_of' h p (x#xs'); list_of' h q []; Ref.get h p = Node x pn; Ref.get h q = Empty \ \ P p q (x#xs') []" assumes "\ x xs' y ys' p q pn qn. - \ list_of' h p (x#xs'); list_of' h q (y#ys'); get_ref p h = Node x pn; get_ref q h = Node y qn; + \ list_of' h p (x#xs'); list_of' h q (y#ys'); Ref.get h p = Node x pn; Ref.get h q = Node y qn; x \ y; P pn q xs' (y#ys') \ \ P p q (x#xs') (y#ys')" assumes "\ x xs' y ys' p q pn qn. - \ list_of' h p (x#xs'); list_of' h q (y#ys'); get_ref p h = Node x pn; get_ref q h = Node y qn; + \ list_of' h p (x#xs'); list_of' h q (y#ys'); Ref.get h p = Node x pn; Ref.get h q = Node y qn; \ x \ y; P p qn (x#xs') ys'\ \ P p q (x#xs') (y#ys')" shows "P p q xs ys" using assms(1-2) proof (induct xs ys arbitrary: p q rule: Lmerge.induct) case (2 ys) - from 2(1) have "get_ref p h = Empty" unfolding list_of'_def by simp + from 2(1) have "Ref.get h p = Empty" unfolding list_of'_def by simp with 2(1-2) assms(3) show ?case by blast next case (3 x xs') - from 3(1) obtain pn where Node: "get_ref p h = Node x pn" by (rule list_of'_Cons) - from 3(2) have "get_ref q h = Empty" unfolding list_of'_def by simp + from 3(1) obtain pn where Node: "Ref.get h p = Node x pn" by (rule list_of'_Cons) + from 3(2) have "Ref.get h q = Empty" unfolding list_of'_def by simp with Node 3(1-2) assms(4) show ?case by blast next case (1 x xs' y ys') - from 1(3) obtain pn where pNode:"get_ref p h = Node x pn" + from 1(3) obtain pn where pNode:"Ref.get h p = Node x pn" and list_of'_pn: "list_of' h pn xs'" by (rule list_of'_Cons) - from 1(4) obtain qn where qNode:"get_ref q h = Node y qn" + from 1(4) obtain qn where qNode:"Ref.get h q = Node y qn" and list_of'_qn: "list_of' h qn ys'" by (rule list_of'_Cons) show ?case proof (cases "x \ y") @@ -780,15 +780,15 @@ assumes "list_of' h p xs" assumes "list_of' h q ys" assumes "crel (merge p q) h h' r" -assumes "\ ys p q. \ list_of' h p []; list_of' h q ys; get_ref p h = Empty \ \ P p q h h q [] ys" -assumes "\ x xs' p q pn. \ list_of' h p (x#xs'); list_of' h q []; get_ref p h = Node x pn; get_ref q h = Empty \ \ P p q h h p (x#xs') []" +assumes "\ ys p q. \ list_of' h p []; list_of' h q ys; Ref.get h p = Empty \ \ P p q h h q [] ys" +assumes "\ x xs' p q pn. \ list_of' h p (x#xs'); list_of' h q []; Ref.get h p = Node x pn; Ref.get h q = Empty \ \ P p q h h p (x#xs') []" assumes "\ x xs' y ys' p q pn qn h1 r1 h'. - \ list_of' h p (x#xs'); list_of' h q (y#ys');get_ref p h = Node x pn; get_ref q h = Node y qn; - x \ y; crel (merge pn q) h h1 r1 ; P pn q h h1 r1 xs' (y#ys'); h' = set_ref p (Node x r1) h1 \ + \ list_of' h p (x#xs'); list_of' h q (y#ys');Ref.get h p = Node x pn; Ref.get h q = Node y qn; + x \ y; crel (merge pn q) h h1 r1 ; P pn q h h1 r1 xs' (y#ys'); h' = Ref.set p (Node x r1) h1 \ \ P p q h h' p (x#xs') (y#ys')" assumes "\ x xs' y ys' p q pn qn h1 r1 h'. - \ list_of' h p (x#xs'); list_of' h q (y#ys'); get_ref p h = Node x pn; get_ref q h = Node y qn; - \ x \ y; crel (merge p qn) h h1 r1; P p qn h h1 r1 (x#xs') ys'; h' = set_ref q (Node y r1) h1 \ + \ list_of' h p (x#xs'); list_of' h q (y#ys'); Ref.get h p = Node x pn; Ref.get h q = Node y qn; + \ x \ y; crel (merge p qn) h h1 r1; P p qn h h1 r1 (x#xs') ys'; h' = Ref.set q (Node y r1) h1 \ \ P p q h h' q (x#xs') (y#ys')" shows "P p q h h' r xs ys" using assms(3) @@ -808,7 +808,7 @@ case (3 x xs' y ys' p q pn qn) from 3(3-5) 3(7) obtain h1 r1 where 1: "crel (merge pn q) h h1 r1" - and 2: "h' = set_ref p (Node x r1) h1 \ r = p" + and 2: "h' = Ref.set p (Node x r1) h1 \ r = p" unfolding merge_simps[of p q] by (auto elim!: crel_lookup crelE crel_return crel_if crel_update) from 3(6)[OF 1] assms(6) [OF 3(1-5)] 1 2 show ?case by simp @@ -816,7 +816,7 @@ case (4 x xs' y ys' p q pn qn) from 4(3-5) 4(7) obtain h1 r1 where 1: "crel (merge p qn) h h1 r1" - and 2: "h' = set_ref q (Node y r1) h1 \ r = q" + and 2: "h' = Ref.set q (Node y r1) h1 \ r = q" unfolding merge_simps[of p q] by (auto elim!: crel_lookup crelE crel_return crel_if crel_update) from 4(6)[OF 1] assms(7) [OF 4(1-5)] 1 2 show ?case by simp @@ -834,7 +834,7 @@ assumes "crel (merge p q) h h' r'" assumes "set xs \ set ys = {}" assumes "r \ set xs \ set ys" - shows "get_ref r h = get_ref r h'" + shows "Ref.get h r = Ref.get h' r" proof - from assms(1) obtain ps where ps_def: "list_of' h p ps" by (rule refs_of'_list_of') from assms(2) obtain qs where qs_def: "list_of' h q qs" by (rule refs_of'_list_of') @@ -853,7 +853,8 @@ from pnrs_def 3(12) have "r \ p" by auto with 3(11) 3(12) pnrs_def refs_of'_distinct[OF 3(9)] have p_in: "p \ set pnrs \ set ys" by auto from 3(11) pnrs_def have no_inter: "set pnrs \ set ys = {}" by auto - from 3(7)[OF refs_of'_pn 3(10) this p_in] 3(3) have p_is_Node: "get_ref p h1 = Node x pn" by simp + from 3(7)[OF refs_of'_pn 3(10) this p_in] 3(3) have p_is_Node: "Ref.get h1 p = Node x pn" + by simp from 3(7)[OF refs_of'_pn 3(10) no_inter r_in] 3(8) `r \ p` show ?case by simp next @@ -866,7 +867,7 @@ from qnrs_def 4(12) have "r \ q" by auto with 4(11) 4(12) qnrs_def refs_of'_distinct[OF 4(10)] have q_in: "q \ set xs \ set qnrs" by auto from 4(11) qnrs_def have no_inter: "set xs \ set qnrs = {}" by auto - from 4(7)[OF 4(9) refs_of'_qn this q_in] 4(4) have q_is_Node: "get_ref q h1 = Node y qn" by simp + from 4(7)[OF 4(9) refs_of'_qn this q_in] 4(4) have q_is_Node: "Ref.get h1 q = Node y qn" by simp from 4(7)[OF 4(9) refs_of'_qn no_inter r_in] 4(8) `r \ q` show ?case by simp qed @@ -899,7 +900,7 @@ by (rule refs_of'_Node) from 3(10) 3(9) 3(11) pnrs_def refs_of'_distinct[OF 3(9)] have p_in: "p \ set pnrs \ set ys" by auto from 3(11) pnrs_def have no_inter: "set pnrs \ set ys = {}" by auto - from merge_unchanged[OF refs_of'_pn 3(10) 3(6) no_inter p_in] have p_stays: "get_ref p h1 = get_ref p h" .. + from merge_unchanged[OF refs_of'_pn 3(10) 3(6) no_inter p_in] have p_stays: "Ref.get h1 p = Ref.get h p" .. from 3 p_stays obtain r1s where rs_def: "rs = p#r1s" and refs_of'_r1:"refs_of' h1 r1 r1s" by (auto elim: refs_of'_set_next_ref) @@ -912,7 +913,7 @@ by (rule refs_of'_Node) from 4(10) 4(9) 4(11) qnrs_def refs_of'_distinct[OF 4(10)] have q_in: "q \ set xs \ set qnrs" by auto from 4(11) qnrs_def have no_inter: "set xs \ set qnrs = {}" by auto - from merge_unchanged[OF 4(9) refs_of'_qn 4(6) no_inter q_in] have q_stays: "get_ref q h1 = get_ref q h" .. + from merge_unchanged[OF 4(9) refs_of'_qn 4(6) no_inter q_in] have q_stays: "Ref.get h1 q = Ref.get h q" .. from 4 q_stays obtain r1s where rs_def: "rs = q#r1s" and refs_of'_r1:"refs_of' h1 r1 r1s" by (auto elim: refs_of'_set_next_ref) @@ -945,7 +946,7 @@ from prs_def qrs_def 3(9) pnrs_def have no_inter: "set pnrs \ set qrs = {}" by fastsimp from no_inter refs_of'_pn qrs_def have no_inter2: "\qrs prs. refs_of' h q qrs \ refs_of' h pn prs \ set prs \ set qrs = {}" by (fastsimp dest: refs_of'_is_fun) - from merge_unchanged[OF refs_of'_pn qrs_def 3(6) no_inter p_in] have p_stays: "get_ref p h1 = get_ref p h" .. + from merge_unchanged[OF refs_of'_pn qrs_def 3(6) no_inter p_in] have p_stays: "Ref.get h1 p = Ref.get h p" .. from 3(7)[OF no_inter2] obtain rs where rs_def: "refs_of' h1 r1 rs" by (rule list_of'_refs_of') from refs_of'_merge[OF refs_of'_pn qrs_def 3(6) no_inter this] p_in have p_rs: "p \ set rs" by auto with 3(7)[OF no_inter2] 3(1-5) 3(8) p_rs rs_def p_stays @@ -962,7 +963,7 @@ from prs_def qrs_def 4(9) qnrs_def have no_inter: "set prs \ set qnrs = {}" by fastsimp from no_inter refs_of'_qn prs_def have no_inter2: "\qrs prs. refs_of' h qn qrs \ refs_of' h p prs \ set prs \ set qrs = {}" by (fastsimp dest: refs_of'_is_fun) - from merge_unchanged[OF prs_def refs_of'_qn 4(6) no_inter q_in] have q_stays: "get_ref q h1 = get_ref q h" .. + from merge_unchanged[OF prs_def refs_of'_qn 4(6) no_inter q_in] have q_stays: "Ref.get h1 q = Ref.get h q" .. from 4(7)[OF no_inter2] obtain rs where rs_def: "refs_of' h1 r1 rs" by (rule list_of'_refs_of') from refs_of'_merge[OF prs_def refs_of'_qn 4(6) no_inter this] q_in have q_rs: "q \ set rs" by auto with 4(7)[OF no_inter2] 4(1-5) 4(8) q_rs rs_def q_stays @@ -984,8 +985,8 @@ (do ll_xs \ make_llist (filter (%n. n mod 2 = 0) [2..8]); ll_ys \ make_llist (filter (%n. n mod 2 = 1) [5..11]); - r \ Ref.new ll_xs; - q \ Ref.new ll_ys; + r \ ref ll_xs; + q \ ref ll_ys; p \ merge r q; ll_zs \ !p; zs \ traverse ll_zs; @@ -998,4 +999,4 @@ ML {* @{code test_2} () *} ML {* @{code test_3} () *} -end \ No newline at end of file +end diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/ex/SatChecker.thy --- a/src/HOL/Imperative_HOL/ex/SatChecker.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/ex/SatChecker.thy Tue Jul 06 10:02:24 2010 +0200 @@ -118,6 +118,32 @@ text {* Specific definition for derived clauses in the Array *} +definition + array_ran :: "('a\heap) option array \ heap \ 'a set" where + "array_ran a h = {e. Some e \ set (get_array a h)}" + -- {*FIXME*} + +lemma array_ranI: "\ Some b = get_array a h ! i; i < Array.length a h \ \ b \ array_ran a h" +unfolding array_ran_def Array.length_def by simp + +lemma array_ran_upd_array_Some: + assumes "cl \ array_ran a (Array.change a i (Some b) h)" + shows "cl \ array_ran a h \ cl = b" +proof - + have "set (get_array a h[i := Some b]) \ insert (Some b) (set (get_array a h))" by (rule set_update_subset_insert) + with assms show ?thesis + unfolding array_ran_def Array.change_def by fastsimp +qed + +lemma array_ran_upd_array_None: + assumes "cl \ array_ran a (Array.change a i None h)" + shows "cl \ array_ran a h" +proof - + have "set (get_array a h[i := None]) \ insert None (set (get_array a h))" by (rule set_update_subset_insert) + with assms show ?thesis + unfolding array_ran_def Array.change_def by auto +qed + definition correctArray :: "Clause list \ Clause option array \ heap \ bool" where "correctArray rootcls a h = @@ -126,7 +152,7 @@ lemma correctArray_update: assumes "correctArray rcs a h" assumes "correctClause rcs c" "sorted c" "distinct c" - shows "correctArray rcs a (Heap.upd a i (Some c) h)" + shows "correctArray rcs a (Array.change a i (Some c) h)" using assms unfolding correctArray_def by (auto dest:array_ran_upd_array_Some) @@ -145,7 +171,7 @@ subsection{* Function definitions *} -fun res_mem :: "Lit \ Clause \ Clause Heap" +primrec res_mem :: "Lit \ Clause \ Clause Heap" where "res_mem l [] = raise ''MiniSatChecked.res_thm: Cannot find literal''" | "res_mem l (x#xs) = (if (x = l) then return xs else (do v \ res_mem l xs; return (x # v) done))" @@ -393,7 +419,7 @@ done)" -fun res_thm2 :: "Clause option array \ (Lit * ClauseId) \ Clause \ Clause Heap" +primrec res_thm2 :: "Clause option array \ (Lit * ClauseId) \ Clause \ Clause Heap" where "res_thm2 a (l, j) cli = ( if l = 0 then raise(''Illegal literal'') @@ -445,7 +471,7 @@ fix clj let ?rs = "merge (remove l cli) (remove (compl l) clj)" let ?rs' = "merge (remove (compl l) cli) (remove l clj)" - assume "h = h'" "Some clj = get_array a h' ! j" "j < Heap.length a h'" + assume "h = h'" "Some clj = get_array a h' ! j" "j < Array.length a h'" with correct_a have clj: "correctClause r clj" "sorted clj" "distinct clj" unfolding correctArray_def by (auto intro: array_ranI) with clj l_not_zero correct_cli @@ -459,7 +485,7 @@ } { fix v clj - assume "Some clj = get_array a h ! j" "j < Heap.length a h" + assume "Some clj = get_array a h ! j" "j < Array.length a h" with correct_a have clj: "correctClause r clj \ sorted clj \ distinct clj" unfolding correctArray_def by (auto intro: array_ranI) assume "crel (res_thm' l cli clj) h h' rs" @@ -606,7 +632,7 @@ subsection {* Checker functions *} -fun lres_thm :: "Clause option list \ (Lit * ClauseId) \ Clause \ Clause Heap" +primrec lres_thm :: "Clause option list \ (Lit * ClauseId) \ Clause \ Clause Heap" where "lres_thm xs (l, j) cli = (if (j < List.length xs) then (case (xs ! j) of None \ raise (''MiniSatChecked.res_thm: No resolvant clause in thms array for Conflict step.'') @@ -640,7 +666,7 @@ section {* Functional version with RedBlackTrees *} -fun tres_thm :: "(ClauseId, Clause) RBT_Impl.rbt \ Lit \ ClauseId \ Clause \ Clause Heap" +primrec tres_thm :: "(ClauseId, Clause) RBT_Impl.rbt \ Lit \ ClauseId \ Clause \ Clause Heap" where "tres_thm t (l, j) cli = (case (RBT_Impl.lookup t j) of diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/ex/Sorted_List.thy --- a/src/HOL/Imperative_HOL/ex/Sorted_List.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/ex/Sorted_List.thy Tue Jul 06 10:02:24 2010 +0200 @@ -33,7 +33,7 @@ text {* The remove function removes an element from a sorted list *} -fun remove :: "('a :: linorder) \ 'a list \ 'a list" +primrec remove :: "('a :: linorder) \ 'a list \ 'a list" where "remove a [] = []" | "remove a (x#xs) = (if a > x then (x # remove a xs) else (if a = x then xs else x#xs))" @@ -86,16 +86,13 @@ apply (auto simp add: sorted_Cons) done -subsection {* Efficient member function for sorted lists: smem *} +subsection {* Efficient member function for sorted lists *} -fun smember :: "('a::linorder) \ 'a list \ bool" (infixl "smem" 55) -where - "x smem [] = False" -| "x smem (y#ys) = (if x = y then True else (if (x > y) then x smem ys else False))" +primrec smember :: "'a list \ 'a::linorder \ bool" where + "smember [] x \ False" +| "smember (y#ys) x \ x = y \ (x > y \ smember ys x)" -lemma "sorted xs \ x smem xs = (x \ set xs)" -apply (induct xs) -apply (auto simp add: sorted_Cons) -done +lemma "sorted xs \ smember xs x \ (x \ set xs)" + by (induct xs) (auto simp add: sorted_Cons) end \ No newline at end of file diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Imperative_HOL/ex/Subarray.thy --- a/src/HOL/Imperative_HOL/ex/Subarray.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Imperative_HOL/ex/Subarray.thy Tue Jul 06 10:02:24 2010 +0200 @@ -8,65 +8,64 @@ imports Array Sublist begin -definition subarray :: "nat \ nat \ ('a::heap) array \ heap \ 'a list" -where +definition subarray :: "nat \ nat \ ('a::heap) array \ heap \ 'a list" where "subarray n m a h \ sublist' n m (get_array a h)" -lemma subarray_upd: "i \ m \ subarray n m a (Heap.upd a i v h) = subarray n m a h" -apply (simp add: subarray_def Heap.upd_def) +lemma subarray_upd: "i \ m \ subarray n m a (Array.change a i v h) = subarray n m a h" +apply (simp add: subarray_def Array.change_def) apply (simp add: sublist'_update1) done -lemma subarray_upd2: " i < n \ subarray n m a (Heap.upd a i v h) = subarray n m a h" -apply (simp add: subarray_def Heap.upd_def) +lemma subarray_upd2: " i < n \ subarray n m a (Array.change a i v h) = subarray n m a h" +apply (simp add: subarray_def Array.change_def) apply (subst sublist'_update2) apply fastsimp apply simp done -lemma subarray_upd3: "\ n \ i; i < m\ \ subarray n m a (Heap.upd a i v h) = subarray n m a h[i - n := v]" -unfolding subarray_def Heap.upd_def +lemma subarray_upd3: "\ n \ i; i < m\ \ subarray n m a (Array.change a i v h) = subarray n m a h[i - n := v]" +unfolding subarray_def Array.change_def by (simp add: sublist'_update3) lemma subarray_Nil: "n \ m \ subarray n m a h = []" by (simp add: subarray_def sublist'_Nil') -lemma subarray_single: "\ n < Heap.length a h \ \ subarray n (Suc n) a h = [get_array a h ! n]" -by (simp add: subarray_def Heap.length_def sublist'_single) +lemma subarray_single: "\ n < Array.length a h \ \ subarray n (Suc n) a h = [get_array a h ! n]" +by (simp add: subarray_def length_def sublist'_single) -lemma length_subarray: "m \ Heap.length a h \ List.length (subarray n m a h) = m - n" -by (simp add: subarray_def Heap.length_def length_sublist') +lemma length_subarray: "m \ Array.length a h \ List.length (subarray n m a h) = m - n" +by (simp add: subarray_def length_def length_sublist') -lemma length_subarray_0: "m \ Heap.length a h \ List.length (subarray 0 m a h) = m" +lemma length_subarray_0: "m \ Array.length a h \ List.length (subarray 0 m a h) = m" by (simp add: length_subarray) -lemma subarray_nth_array_Cons: "\ i < Heap.length a h; i < j \ \ (get_array a h ! i) # subarray (Suc i) j a h = subarray i j a h" -unfolding Heap.length_def subarray_def +lemma subarray_nth_array_Cons: "\ i < Array.length a h; i < j \ \ (get_array a h ! i) # subarray (Suc i) j a h = subarray i j a h" +unfolding Array.length_def subarray_def by (simp add: sublist'_front) -lemma subarray_nth_array_back: "\ i < j; j \ Heap.length a h\ \ subarray i j a h = subarray i (j - 1) a h @ [get_array a h ! (j - 1)]" -unfolding Heap.length_def subarray_def +lemma subarray_nth_array_back: "\ i < j; j \ Array.length a h\ \ subarray i j a h = subarray i (j - 1) a h @ [get_array a h ! (j - 1)]" +unfolding Array.length_def subarray_def by (simp add: sublist'_back) lemma subarray_append: "\ i < j; j < k \ \ subarray i j a h @ subarray j k a h = subarray i k a h" unfolding subarray_def by (simp add: sublist'_append) -lemma subarray_all: "subarray 0 (Heap.length a h) a h = get_array a h" -unfolding Heap.length_def subarray_def +lemma subarray_all: "subarray 0 (Array.length a h) a h = get_array a h" +unfolding Array.length_def subarray_def by (simp add: sublist'_all) -lemma nth_subarray: "\ k < j - i; j \ Heap.length a h \ \ subarray i j a h ! k = get_array a h ! (i + k)" -unfolding Heap.length_def subarray_def +lemma nth_subarray: "\ k < j - i; j \ Array.length a h \ \ subarray i j a h ! k = get_array a h ! (i + k)" +unfolding Array.length_def subarray_def by (simp add: nth_sublist') -lemma subarray_eq_samelength_iff: "Heap.length a h = Heap.length a h' \ (subarray i j a h = subarray i j a h') = (\i'. i \ i' \ i' < j \ get_array a h ! i' = get_array a h' ! i')" -unfolding Heap.length_def subarray_def by (rule sublist'_eq_samelength_iff) +lemma subarray_eq_samelength_iff: "Array.length a h = Array.length a h' \ (subarray i j a h = subarray i j a h') = (\i'. i \ i' \ i' < j \ get_array a h ! i' = get_array a h' ! i')" +unfolding Array.length_def subarray_def by (rule sublist'_eq_samelength_iff) -lemma all_in_set_subarray_conv: "(\j. j \ set (subarray l r a h) \ P j) = (\k. l \ k \ k < r \ k < Heap.length a h \ P (get_array a h ! k))" -unfolding subarray_def Heap.length_def by (rule all_in_set_sublist'_conv) +lemma all_in_set_subarray_conv: "(\j. j \ set (subarray l r a h) \ P j) = (\k. l \ k \ k < r \ k < Array.length a h \ P (get_array a h ! k))" +unfolding subarray_def Array.length_def by (rule all_in_set_sublist'_conv) -lemma ball_in_set_subarray_conv: "(\j \ set (subarray l r a h). P j) = (\k. l \ k \ k < r \ k < Heap.length a h \ P (get_array a h ! k))" -unfolding subarray_def Heap.length_def by (rule ball_in_set_sublist'_conv) +lemma ball_in_set_subarray_conv: "(\j \ set (subarray l r a h). P j) = (\k. l \ k \ k < r \ k < Array.length a h \ P (get_array a h ! k))" +unfolding subarray_def Array.length_def by (rule ball_in_set_sublist'_conv) end \ No newline at end of file diff -r c82cf6e11669 -r 8244558af8a5 src/HOL/Library/Countable.thy --- a/src/HOL/Library/Countable.thy Mon Jul 05 23:07:36 2010 +0200 +++ b/src/HOL/Library/Countable.thy Tue Jul 06 10:02:24 2010 +0200 @@ -110,26 +110,20 @@ "to_nat_typerep (Typerep.Typerep c ts) = to_nat (to_nat c, to_nat (map to_nat_typerep ts))" instance proof (rule countable_classI) - fix t t' :: typerep and ts - have "(\t'. to_nat_typerep t = to_nat_typerep t' \ t = t') - \ (\ts'. map to_nat_typerep ts = map to_nat_typerep ts' \ ts = ts')" - proof (induct rule: typerep.induct) - case (Typerep c ts) show ?case - proof (rule allI, rule impI) - fix t' - assume hyp: "to_nat_typerep (Typerep.Typerep c ts) = to_nat_typerep t'" - then obtain c' ts' where t': "t' = (Typerep.Typerep c' ts')" - by (cases t') auto - with Typerep hyp have "c = c'" and "ts = ts'" by simp_all - with t' show "Typerep.Typerep c ts = t'" by simp - qed + fix t t' :: typerep and ts ts' :: "typerep list" + assume "to_nat_typerep t = to_nat_typerep t'" + moreover have "to_nat_typerep t = to_nat_typerep t' \ t = t'" + and "map to_nat_typerep ts = map to_nat_typerep ts' \ ts = ts'" + proof (induct t and ts arbitrary: t' and ts' rule: typerep.inducts) + case (Typerep c ts t') + then obtain c' ts' where t': "t' = Typerep.Typerep c' ts'" by (cases t') auto + with Typerep have "c = c'" and "ts = ts'" by simp_all + with t' show "Typerep.Typerep c ts = t'" by simp next case Nil_typerep then show ?case by simp next case (Cons_typerep t ts) then show ?case by auto qed - then have "to_nat_typerep t = to_nat_typerep t' \ t = t'" by auto - moreover assume "to_nat_typerep t = to_nat_typerep t'" ultimately show "t = t'" by simp qed diff -r c82cf6e11669 -r 8244558af8a5 src/Provers/clasimp.ML --- a/src/Provers/clasimp.ML Mon Jul 05 23:07:36 2010 +0200 +++ b/src/Provers/clasimp.ML Tue Jul 06 10:02:24 2010 +0200 @@ -203,7 +203,7 @@ (CHANGED o nodup_depth_tac cs' n); (* slower but more general *) in EVERY [ALLGOALS (Simplifier.asm_full_simp_tac ss), TRY (Classical.safe_tac cs), - REPEAT (FIRSTGOAL maintac), + REPEAT_DETERM (FIRSTGOAL maintac), TRY (Classical.safe_tac (cs addSss ss)), prune_params_tac] end; diff -r c82cf6e11669 -r 8244558af8a5 src/Pure/unify.ML --- a/src/Pure/unify.ML Mon Jul 05 23:07:36 2010 +0200 +++ b/src/Pure/unify.ML Tue Jul 06 10:02:24 2010 +0200 @@ -451,20 +451,23 @@ end; +(*If an argument contains a banned Bound, then it should be deleted. + But if the only path is flexible, this is difficult; the code gives up! + In %x y.?a(x) =?= %x y.?b(?c(y)) should we instantiate ?b or ?c *) +exception CHANGE_FAIL; (*flexible occurrence of banned variable, or other reason to quit*) + + (*Flex argument: a term, its type, and the index that refers to it.*) type flarg = {t: term, T: typ, j: int}; (*Form the arguments into records for deletion/sorting.*) fun flexargs ([], [], []) = [] : flarg list | flexargs (j :: js, t :: ts, T :: Ts) = {j = j, t = t, T = T} :: flexargs (js, ts, Ts) - | flexargs _ = raise Fail "flexargs"; - - -(*If an argument contains a banned Bound, then it should be deleted. - But if the only path is flexible, this is difficult; the code gives up! - In %x y.?a(x) =?= %x y.?b(?c(y)) should we instantiate ?b or ?c *) -exception CHANGE_FAIL; (*flexible occurrence of banned variable*) - + | flexargs _ = raise CHANGE_FAIL; +(*We give up if we see a variable of function type not applied to a full list of + arguments (remember, this code assumes that terms are fully eta-expanded). This situation + can occur if a type variable is instantiated with a function type. +*) (*Check whether the 'banned' bound var indices occur rigidly in t*) fun rigid_bound (lev, banned) t = @@ -516,7 +519,7 @@ val (Var (v, T), ts) = strip_comb t; val (Ts, U) = strip_type env T and js = length ts - 1 downto 0; - val args = sort (make_ord arg_less) (List.foldr (change_arg banned) [] (flexargs (js, ts, Ts))) + val args = sort (make_ord arg_less) (List.foldr (change_arg banned) [] (flexargs (js, ts, Ts))) val ts' = map #t args; in if decreasing (length Ts) args then (env, (list_comb (Var (v, T), ts')))