# HG changeset patch # User nipkow # Date 1084348856 -7200 # Node ID c8e1937110c2fc58397c2bde203e15d2682a22a3 # Parent 86c6f272ef794074ea8ea59e9071b7a546a4d6c7 fixed latex problems diff -r 86c6f272ef79 -r c8e1937110c2 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Wed May 12 08:14:29 2004 +0200 +++ b/src/HOL/Finite_Set.thy Wed May 12 10:00:56 2004 +0200 @@ -892,7 +892,7 @@ lemma setsum_constant_nat [simp]: "finite A ==> (\x: A. y) = (card A) * y" - -- {* Later generalized to any comm_semiring_1_cancel. *} + -- {* Later generalized to any @{text comm_semiring_1_cancel}. *} by (erule finite_induct, auto) lemma setsum_Un: "finite A ==> finite B ==> diff -r 86c6f272ef79 -r c8e1937110c2 src/HOL/Integ/IntDef.thy --- a/src/HOL/Integ/IntDef.thy Wed May 12 08:14:29 2004 +0200 +++ b/src/HOL/Integ/IntDef.thy Wed May 12 10:00:56 2004 +0200 @@ -235,7 +235,7 @@ by (rule trans [OF zmult_commute zmult_1]) -text{*The Integers Form A comm_ring_1*} +text{*The integers form a @{text comm_ring_1}*} instance int :: comm_ring_1 proof fix i j k :: int @@ -368,7 +368,7 @@ zabs_def: "abs(i::int) == if i < 0 then -i else i" -text{*The Integers Form an Ordered comm_ring_1*} +text{*The integers form an ordered @{text comm_ring_1}*} instance int :: ordered_idom proof fix i j k :: int @@ -560,7 +560,8 @@ by (simp add: linorder_not_less neg_def) -subsection{*Embedding of the Naturals into any comm_semiring_1_cancel: @{term of_nat}*} +subsection{*Embedding of the Naturals into any @{text +comm_semiring_1_cancel}: @{term of_nat}*} consts of_nat :: "nat => 'a::comm_semiring_1_cancel" @@ -616,8 +617,9 @@ declare of_nat_le_iff [of 0, simplified, simp] declare of_nat_le_iff [of _ 0, simplified, simp] -text{*The ordering on the comm_semiring_1_cancel is necessary to exclude the possibility of -a finite field, which indeed wraps back to zero.*} +text{*The ordering on the @{text comm_semiring_1_cancel} is necessary +to exclude the possibility of a finite field, which indeed wraps back to +zero.*} lemma of_nat_eq_iff [simp]: "(of_nat m = (of_nat n::'a::ordered_semidom)) = (m = n)" by (simp add: order_eq_iff) @@ -681,7 +683,8 @@ qed -subsection{*Embedding of the Integers into any comm_ring_1: @{term of_int}*} +subsection{*Embedding of the Integers into any @{text comm_ring_1}: +@{term of_int}*} constdefs of_int :: "int => 'a::comm_ring_1" @@ -738,7 +741,8 @@ declare of_int_less_iff [of 0, simplified, simp] declare of_int_less_iff [of _ 0, simplified, simp] -text{*The ordering on the comm_ring_1 is necessary. See @{text of_nat_eq_iff} above.*} +text{*The ordering on the @{text comm_ring_1} is necessary. + See @{text of_nat_eq_iff} above.*} lemma of_int_eq_iff [simp]: "(of_int w = (of_int z::'a::ordered_idom)) = (w = z)" by (simp add: order_eq_iff) diff -r 86c6f272ef79 -r c8e1937110c2 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Wed May 12 08:14:29 2004 +0200 +++ b/src/HOL/Nat.thy Wed May 12 10:00:56 2004 +0200 @@ -712,7 +712,7 @@ by (induct m) (simp_all add: add_mult_distrib) -text{*The Naturals Form A comm_semiring_1_cancel*} +text{*The naturals form a @{text comm_semiring_1_cancel}*} instance nat :: comm_semiring_1_cancel proof fix i j k :: nat @@ -760,7 +760,7 @@ done -text{*The Naturals Form an Ordered comm_semiring_1_cancel*} +text{*The naturals form an ordered @{text comm_semiring_1_cancel}*} instance nat :: ordered_semidom proof fix i j k :: nat