# HG changeset patch # User haftmann # Date 1291823265 -3600 # Node ID c987429a1298cbb313ece7cb941eb151feb611da # Parent 9ff94e7cc3b3c3c478e186849350c44416637d2a work around problems with eta-expansion of equations diff -r 9ff94e7cc3b3 -r c987429a1298 src/HOL/Probability/Borel_Space.thy --- a/src/HOL/Probability/Borel_Space.thy Wed Dec 08 15:05:46 2010 +0100 +++ b/src/HOL/Probability/Borel_Space.thy Wed Dec 08 16:47:45 2010 +0100 @@ -1391,7 +1391,7 @@ proof safe fix a have "{x\space M. a < ?sup x} = (\i\A. {x\space M. a < f i x})" - by (auto simp: less_Sup_iff SUPR_def[where 'a=pextreal] SUPR_apply[where 'c=pextreal]) + by (auto simp: less_SUP_iff SUPR_apply) then show "{x\space M. a < ?sup x} \ sets M" using assms by auto qed @@ -1404,7 +1404,7 @@ proof safe fix a have "{x\space M. ?inf x < a} = (\i\A. {x\space M. f i x < a})" - by (auto simp: Inf_less_iff INFI_def[where 'a=pextreal] INFI_apply) + by (auto simp: INF_less_iff INFI_apply) then show "{x\space M. ?inf x < a} \ sets M" using assms by auto qed @@ -1423,11 +1423,20 @@ using assms by auto qed +lemma INFI_fun_expand: + "(INF y:A. f y) = (\x. (INF y:A. f y x))" + by (simp add: fun_eq_iff INFI_apply) + +lemma SUPR_fun_expand: + "(SUP y:A. f y) = (\x. (SUP y:A. f y x))" + by (simp add: fun_eq_iff SUPR_apply) + lemma (in sigma_algebra) borel_measurable_psuminf[simp, intro]: assumes "\i. f i \ borel_measurable M" shows "(\x. (\\<^isub>\ i. f i x)) \ borel_measurable M" using assms unfolding psuminf_def - by (auto intro!: borel_measurable_SUP[unfolded SUPR_apply]) + by (auto intro!: borel_measurable_SUP [unfolded SUPR_fun_expand]) + section "LIMSEQ is borel measurable" @@ -1456,7 +1465,7 @@ with eq[THEN measurable_cong, of M "\x. x" borel] have "(\x. Real (u' x)) \ borel_measurable M" "(\x. Real (- u' x)) \ borel_measurable M" - unfolding SUPR_apply INFI_apply by auto + unfolding SUPR_fun_expand INFI_fun_expand by auto note this[THEN borel_measurable_real] from borel_measurable_diff[OF this] show ?thesis unfolding * .