# HG changeset patch # User paulson # Date 968141763 -7200 # Node ID ca3173f87b5c6f15677385f91a933e81ac3f7114 # Parent 9dfcb0224f8ca0676a8ab9255c29500882cf99e9 safe_meson_tac -> meson_tac diff -r 9dfcb0224f8c -r ca3173f87b5c src/HOL/ex/mesontest.ML --- a/src/HOL/ex/mesontest.ML Tue Sep 05 10:15:23 2000 +0200 +++ b/src/HOL/ex/mesontest.ML Tue Sep 05 10:16:03 2000 +0200 @@ -160,158 +160,158 @@ writeln"Pelletier's examples"; (*1*) Goal "(P --> Q) = (~Q --> ~P)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*2*) Goal "(~ ~ P) = P"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*3*) Goal "~(P-->Q) --> (Q-->P)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*4*) Goal "(~P-->Q) = (~Q --> P)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*5*) Goal "((P|Q)-->(P|R)) --> (P|(Q-->R))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*6*) Goal "P | ~ P"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*7*) Goal "P | ~ ~ ~ P"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*8. Peirce's law*) Goal "((P-->Q) --> P) --> P"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*9*) Goal "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*10*) Goal "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P=Q)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*11. Proved in each direction (incorrectly, says Pelletier!!) *) Goal "P=(P::bool)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*12. "Dijkstra's law"*) Goal "((P = Q) = R) = (P = (Q = R))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*13. Distributive law*) Goal "(P | (Q & R)) = ((P | Q) & (P | R))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*14*) Goal "(P = Q) = ((Q | ~P) & (~Q|P))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*15*) Goal "(P --> Q) = (~P | Q)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*16*) Goal "(P-->Q) | (Q-->P)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*17*) Goal "((P & (Q-->R))-->S) = ((~P | Q | S) & (~P | ~R | S))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Classical Logic: examples with quantifiers"; Goal "(! x. P x & Q x) = ((! x. P x) & (! x. Q x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); Goal "(? x. P --> Q x) = (P --> (? x. Q x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); Goal "(? x. P x --> Q) = ((! x. P x) --> Q)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); Goal "((! x. P x) | Q) = (! x. P x | Q)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); Goal "(! x. P x --> P(f x)) & P d --> P(f(f(f d)))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); (*Needs double instantiation of EXISTS*) Goal "? x. P x --> P a & P b"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); Goal "? z. P z --> (! x. P x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Hard examples with quantifiers"; writeln"Problem 18"; Goal "? y. ! x. P y --> P x"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 19"; Goal "? x. ! y z. (P y --> Q z) --> (P x --> Q x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 20"; Goal "(! x y. ? z. ! w. (P x & Q y --> R z & S w)) \ \ --> (? x y. P x & Q y) --> (? z. R z)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 21"; Goal "(? x. P --> Q x) & (? x. Q x --> P) --> (? x. P=Q x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 22"; Goal "(! x. P = Q x) --> (P = (! x. Q x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 23"; Goal "(! x. P | Q x) = (P | (! x. Q x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 24"; (*The first goal clause is useless*) Goal "~(? x. S x & Q x) & (! x. P x --> Q x | R x) & \ \ (~(? x. P x) --> (? x. Q x)) & (! x. Q x | R x --> S x) \ \ --> (? x. P x & R x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 25"; @@ -320,14 +320,14 @@ \ (! x. P x --> (M x & L x)) & \ \ ((! x. P x --> Q x) | (? x. P x & R x)) \ \ --> (? x. Q x & P x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 26"; (*24 Horn clauses*) Goal "((? x. p x) = (? x. q x)) & \ \ (! x. ! y. p x & q y --> (r x = s y)) \ \ --> ((! x. p x --> r x) = (! x. q x --> s x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 27"; (*13 Horn clauses*) @@ -336,7 +336,7 @@ \ (! x. M x & L x --> P x) & \ \ ((? x. R x & ~ Q x) --> (! x. L x --> ~ R x)) \ \ --> (! x. M x --> ~L x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 28. AMENDED"; (*14 Horn clauses*) @@ -344,7 +344,7 @@ \ ((! x. Q x | R x) --> (? x. Q x & S x)) & \ \ ((? x. S x) --> (! x. L x --> M x)) \ \ --> (! x. P x & L x --> M x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; @@ -352,14 +352,14 @@ Goal "(? x. F x) & (? y. G y) \ \ --> ( ((! x. F x --> H x) & (! y. G y --> J y)) = \ \ (! x y. F x & G y --> H x & J y))"; -by (safe_meson_tac 1); (*0.7 secs*) +by (meson_tac 1); (*0.7 secs*) result(); writeln"Problem 30"; Goal "(! x. P x | Q x --> ~ R x) & \ \ (! x. (Q x --> ~ S x) --> P x & R x) \ \ --> (! x. S x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 31"; (*10 Horn clauses; first negative clauses is useless*) @@ -367,7 +367,7 @@ \ (? x. L x & P x) & \ \ (! x. ~ R x --> M x) \ \ --> (? x. L x & M x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 32"; @@ -375,13 +375,13 @@ \ (! x. S x & R x --> L x) & \ \ (! x. M x --> R x) \ \ --> (! x. P x & M x --> L x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 33"; (*55 Horn clauses*) Goal "(! x. P a & (P x --> P b)-->P c) = \ \ (! x. (~P a | P x | P c) & (~P a | ~P b | P c))"; -by (safe_meson_tac 1); (*5.6 secs*) +by (meson_tac 1); (*5.6 secs*) result(); writeln"Problem 34 AMENDED (TWICE!!)"; (*924 Horn clauses*) @@ -390,12 +390,12 @@ \ ((? x. q x) = (! y. p y))) = \ \ ((? x. ! y. q x = q y) = \ \ ((? x. p x) = (! y. q y)))"; -by (safe_meson_tac 1); (*13 secs*) +by (meson_tac 1); (*13 secs*) result(); writeln"Problem 35"; Goal "? x y. P x y --> (! u v. P u v)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 36"; (*15 Horn clauses*) @@ -404,7 +404,7 @@ \ (! x y. J x y | G x y --> \ \ (! z. J y z | G y z --> H x z)) \ \ --> (! x. ? y. H x y)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 37"; (*10 Horn clauses*) @@ -413,7 +413,7 @@ \ (! x z. ~P x z --> (? y. Q y z)) & \ \ ((? x y. Q x y) --> (! x. R x x)) \ \ --> (! x. ? y. R x y)"; -by (safe_meson_tac 1); (*causes unification tracing messages*) +by (meson_tac 1); (*causes unification tracing messages*) result(); writeln"Problem 38"; (*Quite hard: 422 Horn clauses!!*) @@ -427,24 +427,24 @@ writeln"Problem 39"; Goal "~ (? x. ! y. F y x = (~F y y))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 40. AMENDED"; Goal "(? y. ! x. F x y = F x x) \ \ --> ~ (! x. ? y. ! z. F z y = (~F z x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 41"; Goal "(! z. (? y. (! x. f x y = (f x z & ~ f x x)))) \ \ --> ~ (? z. ! x. f x z)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 42"; Goal "~ (? y. ! x. p x y = (~ (? z. p x z & p z x)))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 43 NOW PROVED AUTOMATICALLY!!"; @@ -459,7 +459,7 @@ \ (? y. g y & h x y & (? y. g y & ~ h x y))) & \ \ (? x. j x & (! y. g y --> h x y)) \ \ --> (? x. j x & ~f x)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 45"; (*27 Horn clauses; 54-step proof*) @@ -526,7 +526,7 @@ writeln"Problem 50"; (*What has this to do with equality?*) Goal "(! x. P a x | (! y. P x y)) --> (? x. ! y. P x y)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 55"; @@ -542,36 +542,36 @@ \ (!x. hates agatha x --> hates butler x) & \ \ (!x. ~hates x agatha | ~hates x butler | ~hates x charles) --> \ \ (? x. killed x agatha)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 57"; Goal "P (f a b) (f b c) & P (f b c) (f a c) & \ \ (! x y z. P x y & P y z --> P x z) --> P (f a b) (f a c)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 58"; (* Challenge found on info-hol *) Goal "! P Q R x. ? v w. ! y z. P x & Q y --> (P v | R w) & (R z --> Q v)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 59"; Goal "(! x. P x = (~P(f x))) --> (? x. P x & ~P(f x))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 60"; Goal "! x. P x (f x) = (? y. (! z. P z y --> P z (f x)) & P x y)"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 62 as corrected in JAR 18 (1997), page 135"; Goal "(ALL x. p a & (p x --> p(f x)) --> p(f(f x))) = \ \ (ALL x. (~ p a | p x | p(f(f x))) & \ \ (~ p a | ~ p(f x) | p(f(f x))))"; -by (safe_meson_tac 1); +by (meson_tac 1); result(); @@ -586,14 +586,14 @@ | axjoin (p::ps, q) = "(" ^ p ^ ") --> (" ^ axjoin(ps,q) ^ ")"; Goal (axjoin([axa,axb,axd], "! x. T(i x x)")); -by (safe_meson_tac 1); +by (meson_tac 1); result(); writeln"Problem 66"; Goal (axjoin([axa,axb,axc,axd], "! x. T(i x(n(n x)))")); (*TOO SLOW, several minutes! 208346 inferences so far. Searching to depth 23 -by (safe_meson_tac 1); +by (meson_tac 1); result(); *) @@ -601,7 +601,7 @@ Goal (axjoin([axa,axb,axc,axd], "! x. T(i(n(n x)) x)")); (*TOO SLOW: more than 3 minutes! 51061 inferences so far. Searching to depth 21 -by (safe_meson_tac 1); +by (meson_tac 1); result(); *) diff -r 9dfcb0224f8c -r ca3173f87b5c src/HOL/ex/mesontest2.ML --- a/src/HOL/ex/mesontest2.ML Tue Sep 05 10:15:23 2000 +0200 +++ b/src/HOL/ex/mesontest2.ML Tue Sep 05 10:16:03 2000 +0200 @@ -17,8 +17,6 @@ fun prove_hard arg = if even_hard_ones then prove arg else TrueI; -val meson_tac = safe_meson_tac 1; - set timing; (* ========================================================================= *) @@ -177,7 +175,7 @@ \ (! X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ \ (! X Y. equal(X::'a,Y) --> equal(inverse(X),inverse(Y))) & \ \ (~product(x::'a,x,x)) --> False", - meson_tac); + meson_tac 1); (*51194 inferences so far. Searching to depth 13. 204.6 secs Strange! The previous problem also has 51194 inferences at depth 13. They @@ -220,7 +218,7 @@ \ (! X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ \ (! X Y. equal(X::'a,Y) --> equal(inverse(X),inverse(Y))) & \ \ (~sum(x::'a,x,x)) --> False", - meson_tac); + meson_tac 1); (*74799 inferences so far. Searching to depth 13. 290.0 secs*) val BOO005_1 = prove_hard @@ -261,7 +259,7 @@ \ (! X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ \ (! X Y. equal(X::'a,Y) --> equal(inverse(X),inverse(Y))) & \ \ (~sum(x::'a,multiplicative_identity,multiplicative_identity)) --> False", - meson_tac); + meson_tac 1); (*74799 inferences so far. Searching to depth 13. 314.6 secs*) val BOO006_1 = prove_hard @@ -302,7 +300,7 @@ \ (! X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ \ (! X Y. equal(X::'a,Y) --> equal(inverse(X),inverse(Y))) & \ \ (~product(x::'a,additive_identity,additive_identity)) --> False", - meson_tac); + meson_tac 1); (*5 inferences so far. Searching to depth 5. 1.3 secs*) val BOO011_1 = prove @@ -343,7 +341,7 @@ \ (! X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & \ \ (! X Y. equal(X::'a,Y) --> equal(inverse(X),inverse(Y))) & \ \ (~equal(inverse(additive_identity),multiplicative_identity)) --> False", - meson_tac); + meson_tac 1); (*4007 inferences so far. Searching to depth 9. 13 secs*) val CAT001_3 = prove_hard @@ -381,7 +379,7 @@ \ (there_exists(compos(b::'a,h))) & \ \ (equal(compos(b::'a,h),compos(b::'a,g))) & \ \ (~equal(h::'a,g)) --> False", - meson_tac); + meson_tac 1); (*245 inferences so far. Searching to depth 7. 1.0 secs*) val CAT003_3 = prove @@ -419,7 +417,7 @@ \ (there_exists(h)) & \ \ (equal(compos(h::'a,a),compos(g::'a,a))) & \ \ (~equal(g::'a,h)) --> False", - meson_tac); + meson_tac 1); (*54288 inferences so far. Searching to depth 14. 118.0 secs*) val CAT005_1 = prove_hard @@ -457,7 +455,7 @@ \ (defined(a::'a,d)) & \ \ (identity_map(d)) & \ \ (~equal(domain(a),d)) --> False", - meson_tac); + meson_tac 1); (*1728 inferences so far. Searching to depth 10. 5.8 secs*) @@ -495,7 +493,7 @@ \ (! X Y Z. equal(X::'a,Y) --> equal(compos(X::'a,Z),compos(Y::'a,Z))) & \ \ (equal(domain(a),codomain(b))) & \ \ (~defined(a::'a,b)) --> False", - meson_tac); + meson_tac 1); (*82895 inferences so far. Searching to depth 13. 355 secs*) val CAT018_1 = prove_hard @@ -533,7 +531,7 @@ \ (defined(a::'a,b)) & \ \ (defined(b::'a,c)) & \ \ (~defined(a::'a,compos(b::'a,c))) --> False", - meson_tac); + meson_tac 1); (*1118 inferences so far. Searching to depth 8. 2.3 secs*) val COL001_2 = prove @@ -548,7 +546,7 @@ \ (! D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ \ (! X. equal(apply(apply(apply(s::'a,apply(b::'a,X)),i),apply(apply(s::'a,apply(b::'a,X)),i)),apply(x::'a,apply(apply(apply(s::'a,apply(b::'a,X)),i),apply(apply(s::'a,apply(b::'a,X)),i))))) & \ \ (! Y. ~equal(Y::'a,apply(combinator::'a,Y))) --> False", - meson_tac); + meson_tac 1); (*500 inferences so far. Searching to depth 8. 0.9 secs*) val COL023_1 = prove @@ -560,7 +558,7 @@ \ (! A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & \ \ (! D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ \ (! Y. ~equal(Y::'a,apply(combinator::'a,Y))) --> False", - meson_tac); + meson_tac 1); (*3018 inferences so far. Searching to depth 10. 4.3 secs*) val COL032_1 = prove_hard @@ -573,7 +571,7 @@ \ (! D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & \ \ (! G H. equal(G::'a,H) --> equal(f(G),f(H))) & \ \ (! Y. ~equal(apply(Y::'a,f(Y)),apply(f(Y),apply(Y::'a,f(Y))))) --> False", - meson_tac); + meson_tac 1); (*381878 inferences so far. Searching to depth 13. 670.4 secs*) val COL052_2 = prove_hard @@ -593,7 +591,7 @@ \ (agreeable(c)) & \ \ (~agreeable(a)) & \ \ (equal(c::'a,compos(a::'a,b))) --> False", - meson_tac); + meson_tac 1); (*13201 inferences so far. Searching to depth 11. 31.9 secs*) val COL075_2 = prove_hard @@ -607,7 +605,7 @@ \ (! A B. equal(A::'a,B) --> equal(b(A),b(B))) & \ \ (! C D. equal(C::'a,D) --> equal(c(C),c(D))) & \ \ (! Y. ~equal(apply(apply(Y::'a,b(Y)),c(Y)),apply(b(Y),b(Y)))) --> False", - meson_tac); + meson_tac 1); (*33 inferences so far. Searching to depth 7. 0.1 secs*) val COM001_1 = prove @@ -622,7 +620,7 @@ \ (follows(p8::'a,p3)) & \ \ (has(p8::'a,goto(loop))) & \ \ (~succeeds(p3::'a,p3)) --> False", - meson_tac); + meson_tac 1); (*533 inferences so far. Searching to depth 13. 0.3 secs*) val COM002_1 = prove @@ -645,7 +643,7 @@ \ (follows(p8::'a,p7)) & \ \ (has(p8::'a,goto(loop))) & \ \ (~succeeds(p3::'a,p3)) --> False", - meson_tac); + meson_tac 1); (*4821 inferences so far. Searching to depth 14. 1.3 secs*) val COM002_2 = prove @@ -668,7 +666,7 @@ \ (follows(p8::'a,p7)) & \ \ (has(p8::'a,goto(loop))) & \ \ (fails(p3::'a,p3)) --> False", - meson_tac); + meson_tac 1); (*98 inferences so far. Searching to depth 10. 1.1 secs*) val COM003_2 = prove @@ -715,7 +713,7 @@ \ (! V Y. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) & program_halts2(Y::'a,Y) --> halts2(c3::'a,Y)) & \ \ (! V Y. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) --> program_not_halts2_halts2_outputs(c3::'a,Y,bad)) & \ \ (algorithm_program_decides(c4)) --> False", - meson_tac); + meson_tac 1); (****************SLOW 2100398 inferences so far. Searching to depth 12. No proof after 30 mins. @@ -745,7 +743,7 @@ \ (equal(n_left::'a,left_child_of(n))) & \ \ (equal(n_right::'a,right_child_of(n))) & \ \ (! Z. ~failure_node(Z::'a,or(empty::'a,empty))) --> False", - meson_tac); + meson_tac 1); ****************) (*179 inferences so far. Searching to depth 7. 3.9 secs*) @@ -806,7 +804,7 @@ \ (! X V1 V2 V3 V4 Y V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,X,V5),continuous(V1::'a,V2,V3,V4,Y,V5))) & \ \ (! X V1 V2 V3 V4 V5 Y. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,V5,X),continuous(V1::'a,V2,V3,V4,V5,Y))) & \ \ (~between(a::'a,b,b)) --> False", - meson_tac); + meson_tac 1); (*4272 inferences so far. Searching to depth 10. 29.4 secs*) val GEO017_2 = prove_hard @@ -865,7 +863,7 @@ \ (! X V1 V2 V3 V4 V5 Y. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,V5,X),continuous(V1::'a,V2,V3,V4,V5,Y))) & \ \ (equidistant(u::'a,v,w,x)) & \ \ (~equidistant(u::'a,v,x,w)) --> False", - meson_tac); + meson_tac 1); (****************SLOW 382903 inferences so far. Searching to depth 9. No proof after 35 minutes. @@ -948,7 +946,7 @@ \ (between(u::'a,v,w)) & \ \ (~equal(u::'a,v)) & \ \ (~equal(w::'a,extension(u::'a,v,v,w))) --> False", - meson_tac); + meson_tac 1); ****************) (*313884 inferences so far. Searching to depth 10. 887 secs: 15 mins.*) @@ -1011,7 +1009,7 @@ \ (! A1 C1 B1. equal(A1::'a,B1) --> equal(reflection(C1::'a,A1),reflection(C1::'a,B1))) & \ \ (equal(v::'a,reflection(u::'a,v))) & \ \ (~equal(u::'a,v)) --> False", - meson_tac); + meson_tac 1); (*0 inferences so far. Searching to depth 0. 0.2 secs*) val GEO079_1 = prove @@ -1021,7 +1019,7 @@ \ (! U V X Y. parallel(U::'a,V,X,Y) --> eq(X::'a,V,U,V,X,Y)) & \ \ (trapezoid(a::'a,b,c,d)) & \ \ (~eq(a::'a,c,b,c,a,d)) --> False", - meson_tac); + meson_tac 1); (****************SLOW 2032008 inferences so far. Searching to depth 16. No proof after 30 minutes. @@ -1046,7 +1044,7 @@ \ (! X. product(X::'a,X,identity)) & \ \ (product(a::'a,b,c)) & \ \ (~product(b::'a,a,c)) --> False", - meson_tac); + meson_tac 1); ****************) (*2386 inferences so far. Searching to depth 11. 8.7 secs*) @@ -1075,7 +1073,7 @@ \ (! A. product(j(A),A,h(A)) | product(A::'a,j(A),h(A)) | q(A)) & \ \ (! A. product(j(A),A,h(A)) & product(A::'a,j(A),h(A)) --> q(A)) & \ \ (~q(identity)) --> False", - meson_tac); + meson_tac 1); (*8625 inferences so far. Searching to depth 11. 20 secs*) val GRP013_1 = prove_hard @@ -1101,7 +1099,7 @@ \ (product(inverse(a),inverse(b),d)) & \ \ (! A C B. product(inverse(A),inverse(B),C) --> product(A::'a,C,B)) & \ \ (~product(c::'a,d,identity)) --> False", - meson_tac); + meson_tac 1); (*2448 inferences so far. Searching to depth 10. 7.2 secs*) val GRP037_3 = prove_hard @@ -1135,7 +1133,7 @@ \ (subgroup_member(a)) & \ \ (subgroup_member(another_identity)) & \ \ (~equal(inverse(a),another_inverse(a))) --> False", - meson_tac); + meson_tac 1); (*163 inferences so far. Searching to depth 11. 0.3 secs*) val GRP031_2 = prove @@ -1146,7 +1144,7 @@ \ (! A. product(A::'a,inverse(A),identity)) & \ \ (! A. product(A::'a,identity,A)) & \ \ (! A. ~product(A::'a,a,identity)) --> False", - meson_tac); + meson_tac 1); (*47 inferences so far. Searching to depth 11. 0.2 secs*) val GRP034_4 = prove @@ -1159,7 +1157,7 @@ \ (! B A C. subgroup_member(A) & subgroup_member(B) & product(B::'a,inverse(A),C) --> subgroup_member(C)) & \ \ (subgroup_member(a)) & \ \ (~subgroup_member(inverse(a))) --> False", - meson_tac); + meson_tac 1); (*3287 inferences so far. Searching to depth 14. 3.5 secs*) val GRP047_2 = prove_hard @@ -1172,7 +1170,7 @@ \ (! X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y)) & \ \ (equal(a::'a,b)) & \ \ (~equal(multiply(c::'a,a),multiply(c::'a,b))) --> False", - meson_tac); + meson_tac 1); (*25559 inferences so far. Searching to depth 19. 16.9 secs*) val GRP130_1_002 = prove_hard @@ -1185,7 +1183,7 @@ \ (! X Y W Z. product(X::'a,W,Y) & product(X::'a,Z,Y) --> equal(W::'a,Z)) & \ \ (! Y X W Z. product(W::'a,Y,X) & product(Z::'a,Y,X) --> equal(W::'a,Z)) & \ \ (! Z1 Z2 Y X. product(X::'a,Y,Z1) & product(X::'a,Z1,Z2) --> product(Z2::'a,Y,X)) --> False", - meson_tac); + meson_tac 1); (*3468 inferences so far. Searching to depth 10. 9.1 secs*) val GRP156_1 = prove_hard @@ -1218,7 +1216,7 @@ \ (! A C B. equal(A::'a,B) --> equal(multiply(C::'a,A),multiply(C::'a,B))) & \ \ (equal(least_upper_bound(a::'a,b),b)) & \ \ (~equal(greatest_lower_bound(multiply(a::'a,c),multiply(b::'a,c)),multiply(a::'a,c))) --> False", - meson_tac); + meson_tac 1); (*4394 inferences so far. Searching to depth 10. 8.2 secs*) val GRP168_1 = prove_hard @@ -1251,7 +1249,7 @@ \ (! A C B. equal(A::'a,B) --> equal(multiply(C::'a,A),multiply(C::'a,B))) & \ \ (equal(least_upper_bound(a::'a,b),b)) & \ \ (~equal(least_upper_bound(multiply(inverse(c),multiply(a::'a,c)),multiply(inverse(c),multiply(b::'a,c))),multiply(inverse(c),multiply(b::'a,c)))) --> False", - meson_tac); + meson_tac 1); (*250258 inferences so far. Searching to depth 16. 406.2 secs*) val HEN003_3 = prove_hard @@ -1270,7 +1268,7 @@ \ (! G H I'. equal(G::'a,H) & less_equal(G::'a,I') --> less_equal(H::'a,I')) & \ \ (! J L K'. equal(J::'a,K') & less_equal(L::'a,J) --> less_equal(L::'a,K')) & \ \ (~equal(divide(a::'a,a),zero)) --> False", - meson_tac); + meson_tac 1); (*202177 inferences so far. Searching to depth 14. 451 secs*) @@ -1304,7 +1302,7 @@ \ (quotient(z::'a,y,zQy)) & \ \ (quotient(z::'a,x,zQx)) & \ \ (~less_equal(zQy::'a,zQx)) --> False", - meson_tac); + meson_tac 1); (*60026 inferences so far. Searching to depth 12. 42.2 secs*) val HEN008_4 = prove_hard @@ -1331,7 +1329,7 @@ \ (! Y Z X. less_equal(X::'a,Y) --> less_equal(divide(Z::'a,Y),divide(Z::'a,X))) & \ \ (less_equal(a::'a,b)) & \ \ (~less_equal(divide(a::'a,c),divide(b::'a,c))) --> False", - meson_tac); + meson_tac 1); (*3160 inferences so far. Searching to depth 11. 3.5 secs*) @@ -1354,7 +1352,7 @@ \ (equal(divide(identity::'a,b),c)) & \ \ (equal(divide(identity::'a,c),d)) & \ \ (~equal(b::'a,d)) --> False", - meson_tac); + meson_tac 1); (*970373 inferences so far. Searching to depth 17. 890.0 secs*) val HEN012_3 = prove_hard @@ -1373,7 +1371,7 @@ \ (! G H I'. equal(G::'a,H) & less_equal(G::'a,I') --> less_equal(H::'a,I')) & \ \ (! J L K'. equal(J::'a,K') & less_equal(L::'a,J) --> less_equal(L::'a,K')) & \ \ (~less_equal(a::'a,a)) --> False", - meson_tac); + meson_tac 1); (*1063 inferences so far. Searching to depth 20. 1.0 secs*) @@ -1381,7 +1379,7 @@ ("(! X Y. is_a_theorem(equivalent(X::'a,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) & \ \ (! X Z Y. is_a_theorem(equivalent(equivalent(X::'a,Y),equivalent(equivalent(X::'a,Z),equivalent(Z::'a,Y))))) & \ \ (~is_a_theorem(equivalent(equivalent(a::'a,b),equivalent(equivalent(c::'a,b),equivalent(a::'a,c))))) --> False", - meson_tac); + meson_tac 1); (*2549 inferences so far. Searching to depth 12. 1.4 secs*) val LCL077_2 = prove @@ -1391,14 +1389,14 @@ \ (! Y X. is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X)))) & \ \ (! X2 X1 X3. is_a_theorem(implies(X1,X2)) & is_a_theorem(implies(X2,X3)) --> is_a_theorem(implies(X1,X3))) & \ \ (~is_a_theorem(implies(not(not(a)),a))) --> False", - meson_tac); + meson_tac 1); (*2036 inferences so far. Searching to depth 20. 1.5 secs*) val LCL082_1 = prove ("(! X Y. is_a_theorem(implies(X::'a,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) & \ \ (! Y Z U X. is_a_theorem(implies(implies(implies(X::'a,Y),Z),implies(implies(Z::'a,X),implies(U::'a,X))))) & \ \ (~is_a_theorem(implies(a::'a,implies(b::'a,a)))) --> False", - meson_tac); + meson_tac 1); (*1100 inferences so far. Searching to depth 13. 1.0 secs*) val LCL111_1 = prove @@ -1408,7 +1406,7 @@ \ (! Y X. is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X)))) & \ \ (! Y X. is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X)))) & \ \ (~is_a_theorem(implies(implies(a,b),implies(implies(c,a),implies(c,b))))) --> False", - meson_tac); + meson_tac 1); (*667 inferences so far. Searching to depth 9. 1.4 secs*) val LCL143_1 = prove @@ -1434,7 +1432,7 @@ \ (! P R Q. equal(P,Q) & ordered(R,P) --> ordered(R,Q)) & \ \ (ordered(x,y)) & \ \ (~ordered(implies(z,x),implies(z,y))) --> False", - meson_tac); + meson_tac 1); (*5245 inferences so far. Searching to depth 12. 4.6 secs*) val LCL182_1 = prove_hard @@ -1447,7 +1445,7 @@ \ (! X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & \ \ (! X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & \ \ (~theorem(or(not(or(not(p),q)),or(not(not(q)),not(p))))) --> False", - meson_tac); + meson_tac 1); (*410 inferences so far. Searching to depth 10. 0.3 secs*) val LCL200_1 = prove @@ -1460,7 +1458,7 @@ \ (! X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & \ \ (! X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & \ \ (~theorem(or(not(not(or(p,q))),not(q)))) --> False", - meson_tac); + meson_tac 1); (*5849 inferences so far. Searching to depth 12. 5.6 secs*) val LCL215_1 = prove_hard @@ -1473,7 +1471,7 @@ \ (! X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & \ \ (! X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & \ \ (~theorem(or(not(or(not(p),q)),or(not(or(p,q)),q)))) --> False", - meson_tac); + meson_tac 1); (*0 secs. Not sure that a search even starts!*) val LCL230_2 = prove @@ -1481,7 +1479,7 @@ \ (~p) & \ \ (q) & \ \ (~r) --> False", - meson_tac); + meson_tac 1); (*119585 inferences so far. Searching to depth 14. 262.4 secs*) val LDA003_1 = prove_hard @@ -1499,7 +1497,7 @@ \ (! G H I'. equal(G::'a,H) & left(G::'a,I') --> left(H::'a,I')) & \ \ (! J L K'. equal(J::'a,K') & left(L::'a,J) --> left(L::'a,K')) & \ \ (~left(num3::'a,u)) --> False", - meson_tac); + meson_tac 1); (*2392 inferences so far. Searching to depth 12. 2.2 secs*) @@ -1518,7 +1516,7 @@ \ (! One_place Thing Place Situation. hand_at(One_place::'a,Situation) & held(Thing::'a,Situation) --> at(Thing::'a,Place,go(Place::'a,Situation))) & \ \ (! Place Thing Situation. hand_at(Place::'a,Situation) & at(Thing::'a,Place,Situation) --> held(Thing::'a,pick_up(Situation))) & \ \ (! Situation. ~answer(Situation)) --> False", - meson_tac); + meson_tac 1); (*73 inferences so far. Searching to depth 10. 0.2 secs*) val MSC003_1 = prove @@ -1530,7 +1528,7 @@ \ (! X. in'(X::'a,human) --> has_parts(X::'a,num2,arm)) & \ \ (! X. in'(X::'a,arm) --> has_parts(X::'a,num1,hand)) & \ \ (~has_parts(john::'a,times(num2::'a,num1),hand)) --> False", - meson_tac); + meson_tac 1); (*1486 inferences so far. Searching to depth 20. 1.2 secs*) val MSC004_1 = prove @@ -1542,7 +1540,7 @@ \ (! X. in'(X::'a,human) --> has_parts(X::'a,num2,arm)) & \ \ (! X. in'(X::'a,arm) --> has_parts(X::'a,num1,hand)) & \ \ (~has_parts(john::'a,times(times(num2::'a,num1),num5),fingers)) --> False", - meson_tac); + meson_tac 1); (*100 inferences so far. Searching to depth 12. 0.1 secs*) val MSC005_1 = prove @@ -1553,7 +1551,7 @@ \ (! X Y. value(X::'a,falsity) & value(Y::'a,truth) --> value(xor(X::'a,Y),truth)) & \ \ (! X Y. value(X::'a,falsity) & value(Y::'a,falsity) --> value(xor(X::'a,Y),falsity)) & \ \ (! Value. ~value(xor(xor(xor(xor(truth::'a,falsity),falsity),truth),falsity),Value)) --> False", - meson_tac); + meson_tac 1); (*19116 inferences so far. Searching to depth 16. 15.9 secs*) val MSC006_1 = prove_hard @@ -1563,7 +1561,7 @@ \ (! X Y. p(X::'a,Y) | q(X::'a,Y)) & \ \ (~p(a::'a,b)) & \ \ (~q(c::'a,d)) --> False", - meson_tac); + meson_tac 1); (*1713 inferences so far. Searching to depth 10. 2.8 secs*) val NUM001_1 = prove @@ -1580,7 +1578,7 @@ \ (! A C B D. equal(A::'a,B) & equal(C::'a,subtract(A::'a,D)) --> equal(C::'a,subtract(B::'a,D))) & \ \ (! A C D B. equal(A::'a,B) & equal(C::'a,subtract(D::'a,A)) --> equal(C::'a,subtract(D::'a,B))) & \ \ (~equal(add(add(a::'a,b),c),add(a::'a,add(b::'a,c)))) --> False", - meson_tac); + meson_tac 1); (*20717 inferences so far. Searching to depth 11. 13.7 secs*) val NUM021_1 = prove_hard @@ -1603,7 +1601,7 @@ \ (~less(b::'a,a)) & \ \ (divides(c::'a,a)) & \ \ (! A. ~equal(successor(A),num0)) --> False", - meson_tac); + meson_tac 1); (*26320 inferences so far. Searching to depth 10. 26.4 secs*) val NUM024_1 = prove_hard @@ -1623,7 +1621,7 @@ \ (! B A C. equal(add(A::'a,B),add(C::'a,B)) --> equal(A::'a,C)) & \ \ (less(a::'a,a)) & \ \ (! A. ~equal(successor(A),num0)) --> False", - meson_tac); + meson_tac 1); (*1345 inferences so far. Searching to depth 7. 23.3 secs. BIG*) @@ -1893,7 +1891,7 @@ \ (! T3 U3 V3. equal(T3::'a,U3) & well_ordering(T3::'a,V3) --> well_ordering(U3::'a,V3)) & \ \ (! W3 Y3 X3. equal(W3::'a,X3) & well_ordering(Y3::'a,W3) --> well_ordering(Y3::'a,X3)) & \ \ (~subclass(limit_ordinals::'a,ordinal_numbers)) --> False", - meson_tac); + meson_tac 1); (*0 inferences so far. Searching to depth 0. 16.8 secs. BIG*) @@ -2164,7 +2162,7 @@ \ (! W3 Y3 X3. equal(W3::'a,X3) & well_ordering(Y3::'a,W3) --> well_ordering(Y3::'a,X3)) & \ \ (~function(z)) & \ \ (~equal(recursion_equation_functions(z),null_class)) --> False", - meson_tac); + meson_tac 1); (*4868 inferences so far. Searching to depth 12. 4.3 secs*) @@ -2186,7 +2184,7 @@ \ (! Situation. at(f::'a,Situation) --> at(d::'a,go(d::'a,Situation))) & \ \ (at(f::'a,s0)) & \ \ (! S'. ~at(a::'a,S')) --> False", - meson_tac); + meson_tac 1); (*190 inferences so far. Searching to depth 10. 0.6 secs*) val PLA006_1 = prove @@ -2221,7 +2219,7 @@ \ (holds(empty::'a,s0)) & \ \ (! State. holds(clear(table),State)) & \ \ (! State. ~holds(on(c::'a,table),State)) --> False", - meson_tac); + meson_tac 1); (*190 inferences so far. Searching to depth 10. 0.5 secs*) val PLA017_1 = prove @@ -2256,7 +2254,7 @@ \ (holds(empty::'a,s0)) & \ \ (! State. holds(clear(table),State)) & \ \ (! State. ~holds(on(a::'a,c),State)) --> False", - meson_tac); + meson_tac 1); (*13732 inferences so far. Searching to depth 16. 9.8 secs*) val PLA022_1 = prove_hard @@ -2291,7 +2289,7 @@ \ (holds(empty::'a,s0)) & \ \ (! State. holds(clear(table),State)) & \ \ (! State. ~holds(and'(on(c::'a,d),on(a::'a,c)),State)) --> False", - meson_tac); + meson_tac 1); (*217 inferences so far. Searching to depth 13. 0.7 secs*) val PLA022_2 = prove @@ -2326,7 +2324,7 @@ \ (holds(empty::'a,s0)) & \ \ (! State. holds(clear(table),State)) & \ \ (! State. ~holds(and'(on(a::'a,c),on(c::'a,d)),State)) --> False", - meson_tac); + meson_tac 1); (*948 inferences so far. Searching to depth 18. 1.1 secs*) val PRV001_1 = prove @@ -2344,7 +2342,7 @@ \ (q1(a::'a,b,c)) & \ \ (! W. ~(q4(a::'a,b,W) & less_or_equal(a::'a,W) & less_or_equal(b::'a,W) & less_or_equal(W::'a,a))) & \ \ (! W. ~(q4(a::'a,b,W) & less_or_equal(a::'a,W) & less_or_equal(b::'a,W) & less_or_equal(W::'a,b))) --> False", - meson_tac); + meson_tac 1); (*21 inferences so far. Searching to depth 5. 0.4 secs*) val PRV003_1 = prove @@ -2375,7 +2373,7 @@ \ (! X. less_than(one::'a,i) & less_than(a(X),a(predecessor(i))) --> less_than(X::'a,i) | less_than(n::'a,X)) & \ \ (! X. ~(less_than(one::'a,X) & less_than(X::'a,i) & less_than(a(X),a(predecessor(X))))) & \ \ (less_than(j::'a,i)) --> False", - meson_tac); + meson_tac 1); (*584 inferences so far. Searching to depth 7. 1.1 secs*) val PRV005_1 = prove @@ -2406,7 +2404,7 @@ \ (! X. less_than(X::'a,successor(n)) & less_than(a(X),a(k)) --> less_than(X::'a,l)) & \ \ (! X. less_than(one::'a,l) & less_than(a(X),a(predecessor(l))) --> less_than(X::'a,l) | less_than(n::'a,X)) & \ \ (! X. ~(less_than(one::'a,X) & less_than(X::'a,l) & less_than(a(X),a(predecessor(X))))) --> False", - meson_tac); + meson_tac 1); (*2343 inferences so far. Searching to depth 8. 3.5 secs*) val PRV006_1 = prove_hard @@ -2436,7 +2434,7 @@ \ (! X. less_than(X::'a,successor(n)) & less_than(a(X),a(m)) --> less_than(X::'a,i)) & \ \ (! X. less_than(one::'a,i) & less_than(a(X),a(predecessor(i))) --> less_than(X::'a,i) | less_than(n::'a,X)) & \ \ (! X. ~(less_than(one::'a,X) & less_than(X::'a,i) & less_than(a(X),a(predecessor(X))))) --> False", - meson_tac); + meson_tac 1); (*86 inferences so far. Searching to depth 14. 0.1 secs*) val PRV009_1 = prove @@ -2449,7 +2447,7 @@ \ (! X Y. less_or_equal(m::'a,X) & less_or_equal(X::'a,Y) & less_or_equal(Y::'a,j) --> less_or_equal(a(X),a(Y))) & \ \ (! X Y. less_or_equal(i::'a,X) & less_or_equal(X::'a,Y) & less_or_equal(Y::'a,n) --> less_or_equal(a(X),a(Y))) & \ \ (~less_or_equal(a(p),a(q))) --> False", - meson_tac); + meson_tac 1); (*222 inferences so far. Searching to depth 8. 0.4 secs*) val PUZ012_1 = prove @@ -2471,7 +2469,7 @@ \ (label(boxc::'a,bananas)) & \ \ (contains(boxb::'a,apples)) & \ \ (~(contains(boxa::'a,bananas) & contains(boxc::'a,oranges))) --> False", - meson_tac); + meson_tac 1); (*35 inferences so far. Searching to depth 5. 3.2 secs*) val PUZ020_1 = prove @@ -2504,7 +2502,7 @@ \ (a_truth(statement_by(husband)) | knight(wife)) & \ \ (knight(wife) --> a_truth(statement_by(husband))) & \ \ (~knight(husband)) --> False", - meson_tac); + meson_tac 1); (*121806 inferences so far. Searching to depth 17. 63.0 secs*) val PUZ025_1 = prove_hard @@ -2532,7 +2530,7 @@ \ (a_truth(says(a::'a,equal_type(b::'a,c)))) & \ \ (ask_1_if_2(c::'a,equal_type(a::'a,b))) & \ \ (! Answer. ~answer(Answer)) --> False", - meson_tac); + meson_tac 1); (*621 inferences so far. Searching to depth 18. 0.2 secs*) @@ -2552,7 +2550,7 @@ \ (young(piggy)) & \ \ (pig(piggy)) & \ \ (balloonist(piggy)) --> False", - meson_tac); + meson_tac 1); (*93620 inferences so far. Searching to depth 24. 65.9 secs*) val RNG001_3 = prove_hard @@ -2564,7 +2562,7 @@ \ (! Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & \ \ (! Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & \ \ (~product(a::'a,additive_identity,additive_identity)) --> False", - meson_tac); + meson_tac 1); (****************SLOW @@ -2600,7 +2598,7 @@ \ (! X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & \ \ (! X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y)) & \ \ (~product(a::'a,additive_identity,additive_identity)) --> False", - meson_tac); + meson_tac 1); ****************) (*0 inferences so far. Searching to depth 0. 0.5 secs*) @@ -2640,7 +2638,7 @@ \ (! X Y. equal(commutator(X::'a,Y),add(multiply(Y::'a,X),additive_inverse(multiply(X::'a,Y))))) & \ \ (! X Y. equal(multiply(multiply(associator(X::'a,X,Y),X),associator(X::'a,X,Y)),additive_identity)) & \ \ (~equal(multiply(multiply(associator(a::'a,a,b),a),associator(a::'a,a,b)),additive_identity)) --> False", - meson_tac); + meson_tac 1); (*202 inferences so far. Searching to depth 8. 0.6 secs*) val RNG023_6 = prove @@ -2673,7 +2671,7 @@ \ (! D1 E1 F1. equal(D1::'a,E1) --> equal(multiply(D1::'a,F1),multiply(E1::'a,F1))) & \ \ (! G1 I1 H1. equal(G1::'a,H1) --> equal(multiply(I1::'a,G1),multiply(I1::'a,H1))) & \ \ (~equal(associator(x::'a,x,y),additive_identity)) --> False", - meson_tac); + meson_tac 1); (*0 inferences so far. Searching to depth 0. 0.6 secs*) val RNG028_2 = prove @@ -2710,7 +2708,7 @@ \ (! X Y Z. ~equal(associator(Y::'a,X,Z),additive_inverse(associator(X::'a,Y,Z)))) & \ \ (! X Y Z. ~equal(associator(Z::'a,Y,X),additive_inverse(associator(X::'a,Y,Z)))) & \ \ (~equal(multiply(multiply(cx::'a,multiply(cy::'a,cx)),cz),multiply(cx::'a,multiply(cy::'a,multiply(cx::'a,cz))))) --> False", - meson_tac); + meson_tac 1); (*209 inferences so far. Searching to depth 9. 1.2 secs*) val RNG038_2 = prove @@ -2744,7 +2742,7 @@ \ (product(a::'a,b,additive_identity)) & \ \ (~equal(a::'a,additive_identity)) & \ \ (~equal(b::'a,additive_identity)) --> False", - meson_tac); + meson_tac 1); (*2660 inferences so far. Searching to depth 10. 7.0 secs*) val RNG040_2 = prove_hard @@ -2788,7 +2786,7 @@ \ (product(b::'a,a,l)) & \ \ (product(c::'a,a,n)) & \ \ (~sum(l::'a,n,additive_identity)) --> False", - meson_tac); + meson_tac 1); (*8991 inferences so far. Searching to depth 9. 22.2 secs*) val RNG041_1 = prove_hard @@ -2833,7 +2831,7 @@ \ (product(a::'a,b,additive_identity)) & \ \ (~equal(a::'a,additive_identity)) & \ \ (~equal(b::'a,additive_identity)) --> False", - meson_tac); + meson_tac 1); (*101319 inferences so far. Searching to depth 14. 76.0 secs*) val ROB010_1 = prove_hard @@ -2848,7 +2846,7 @@ \ (! G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ \ (equal(negate(add(a::'a,negate(b))),c)) & \ \ (~equal(negate(add(c::'a,negate(add(b::'a,a)))),a)) --> False", - meson_tac); + meson_tac 1); (*6933 inferences so far. Searching to depth 12. 5.1 secs*) @@ -2864,7 +2862,7 @@ \ (! G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ \ (equal(negate(add(a::'a,b)),c)) & \ \ (~equal(negate(add(c::'a,negate(add(negate(b),a)))),a)) --> False", - meson_tac); + meson_tac 1); (*6614 inferences so far. Searching to depth 11. 20.4 secs*) val ROB016_1 = prove_hard @@ -2889,7 +2887,7 @@ \ (positive_integer(k)) & \ \ (! Vk X Y. equal(negate(add(negate(Y),negate(add(X::'a,negate(Y))))),X) & positive_integer(Vk) --> equal(negate(add(Y::'a,multiply(Vk::'a,add(X::'a,negate(add(X::'a,negate(Y))))))),negate(Y))) & \ \ (~equal(negate(add(e::'a,multiply(k::'a,add(d::'a,negate(add(d::'a,negate(e))))))),negate(e))) --> False", - meson_tac); + meson_tac 1); (*14077 inferences so far. Searching to depth 11. 32.8 secs*) val ROB021_1 = prove_hard @@ -2904,7 +2902,7 @@ \ (! G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & \ \ (! X Y. equal(negate(X),negate(Y)) --> equal(X::'a,Y)) & \ \ (~equal(add(negate(add(a::'a,negate(b))),negate(add(negate(a),negate(b)))),b)) --> False", - meson_tac); + meson_tac 1); (*35532 inferences so far. Searching to depth 19. 54.3 secs*) val SET005_1 = prove_hard @@ -2924,7 +2922,7 @@ \ (intersection(b::'a,c,bIc)) & \ \ (intersection(a::'a,bIc,aIbIc)) & \ \ (~intersection(aIb::'a,c,aIbIc)) --> False", - meson_tac); + meson_tac 1); (*6450 inferences so far. Searching to depth 14. 4.2 secs*) @@ -2945,7 +2943,7 @@ \ (difference(b::'a,a,bDa)) & \ \ (difference(b::'a,d,bDd)) & \ \ (~subset(bDa::'a,bDd)) --> False", - meson_tac); + meson_tac 1); (*34726 inferences so far. Searching to depth 6. 2420 secs: 40 mins! BIG*) val SET025_4 = prove_hard @@ -3216,7 +3214,7 @@ \ (! W15 X15 Y15. equal(W15::'a,X15) & subset(W15::'a,Y15) --> subset(X15::'a,Y15)) & \ \ (! Z15 B16 A16. equal(Z15::'a,A16) & subset(B16::'a,Z15) --> subset(B16::'a,A16)) & \ \ (~little_set(ordered_pair(a::'a,b))) --> False", - meson_tac); + meson_tac 1); (*13 inferences so far. Searching to depth 8. 0 secs*) @@ -3224,7 +3222,7 @@ ("(! Y X. ~(element(X::'a,a) & element(X::'a,Y) & element(Y::'a,X))) & \ \ (! X. element(X::'a,f(X)) | element(X::'a,a)) & \ \ (! X. element(f(X),X) | element(X::'a,a)) --> False", - meson_tac); + meson_tac 1); (*33 inferences so far. Searching to depth 9. 0.2 secs*) val SET047_5 = prove @@ -3234,14 +3232,14 @@ \ (! X Y. element(f(X::'a,Y),Y) & element(f(X::'a,Y),X) --> set_equal(X::'a,Y)) & \ \ (set_equal(a::'a,b) | set_equal(b::'a,a)) & \ \ (~(set_equal(b::'a,a) & set_equal(a::'a,b))) --> False", - meson_tac); + meson_tac 1); (*311 inferences so far. Searching to depth 12. 0.1 secs*) val SYN034_1 = prove ("(! A. p(A::'a,a) | p(A::'a,f(A))) & \ \ (! A. p(A::'a,a) | p(f(A),A)) & \ \ (! A B. ~(p(A::'a,B) & p(B::'a,A) & p(B::'a,a))) --> False", - meson_tac); + meson_tac 1); (*30 inferences so far. Searching to depth 6. 0.2 secs*) val SYN071_1 = prove @@ -3252,7 +3250,7 @@ \ (equal(a::'a,c) | equal(b::'a,d)) & \ \ (~equal(a::'a,d)) & \ \ (~equal(b::'a,c)) --> False", - meson_tac); + meson_tac 1); (****************SLOW 655670 inferences so far. Searching to depth 44. No proof after 10 minutes. @@ -3267,7 +3265,7 @@ \ (! Y X. f(g(X::'a,Y),Y) & f(g(X::'a,Y),w(X)) --> f(X::'a,g(X::'a,Y)) | f(Y::'a,g(X::'a,Y))) & \ \ (! Y X. f(Y::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)) --> f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),Y)) & \ \ (! Y X. ~(f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),Y) & f(Y::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)))) --> False", - meson_tac); + meson_tac 1); ****************) (*398 inferences so far. Searching to depth 12. 0.4 secs*) @@ -3279,7 +3277,7 @@ \ (! X Y. f(b::'a,z(X::'a,Y)) & f(X::'a,z(X::'a,Y)) --> f(z(X::'a,Y),z(X::'a,Y))) & \ \ (! X Y. ~(f(X::'a,Y) & f(X::'a,z(X::'a,Y)) & f(Y::'a,z(X::'a,Y)))) & \ \ (! X Y. f(X::'a,Y) --> f(X::'a,z(X::'a,Y)) | f(Y::'a,z(X::'a,Y))) --> False", - meson_tac); + meson_tac 1); (*5336 inferences so far. Searching to depth 15. 5.3 secs*) val TOP001_2 = prove_hard @@ -3296,14 +3294,14 @@ \ (! X Y. element_of_set(in_1st_set(X::'a,Y),Y) --> subset_sets(X::'a,Y)) & \ \ (basis(cx::'a,f)) & \ \ (~subset_sets(union_of_members(top_of_basis(f)),cx)) --> False", - meson_tac); + meson_tac 1); (*0 inferences so far. Searching to depth 0. 0 secs*) val TOP002_2 = prove ("(! Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & \ \ (! X. ~element_of_set(X::'a,empty_set)) & \ \ (~element_of_collection(empty_set::'a,top_of_basis(f))) --> False", - meson_tac); + meson_tac 1); (*0 inferences so far. Searching to depth 0. 6.5 secs. BIG*) val TOP004_1 = prove_hard @@ -3420,7 +3418,7 @@ \ (! U. element_of_collection(U::'a,top_of_basis(f))) & \ \ (! V. element_of_collection(V::'a,top_of_basis(f))) & \ \ (! U V. ~element_of_collection(intersection_of_sets(U::'a,V),top_of_basis(f))) --> False", - meson_tac); + meson_tac 1); (*0 inferences so far. Searching to depth 0. 0.8 secs*) @@ -3446,7 +3444,7 @@ \ (! U. element_of_collection(U::'a,top_of_basis(f))) & \ \ (! V. element_of_collection(V::'a,top_of_basis(f))) & \ \ (! U V. ~element_of_collection(intersection_of_sets(U::'a,V),top_of_basis(f))) --> False", - meson_tac); + meson_tac 1); (*53777 inferences so far. Searching to depth 20. 68.7 secs*) val TOP005_2 = prove_hard @@ -3462,6 +3460,6 @@ \ (! X U Y. subset_collections(X::'a,Y) & element_of_collection(U::'a,X) --> element_of_collection(U::'a,Y)) & \ \ (subset_collections(g::'a,top_of_basis(f))) & \ \ (~element_of_collection(union_of_members(g),top_of_basis(f))) --> False", - meson_tac); + meson_tac 1);