# HG changeset patch # User nipkow # Date 1473421161 -7200 # Node ID ca467e73f9122f28d425ae94c0976127b20f943f # Parent b24d0e53dd03264047f99be86fed64673c44d36d added lemmas diff -r b24d0e53dd03 -r ca467e73f912 src/HOL/Map.thy --- a/src/HOL/Map.thy Thu Sep 08 18:18:57 2016 +0200 +++ b/src/HOL/Map.thy Fri Sep 09 13:39:21 2016 +0200 @@ -688,6 +688,12 @@ lemma map_add_le_mapI: "\ f \\<^sub>m h; g \\<^sub>m h \ \ f ++ g \\<^sub>m h" by (auto simp: map_le_def map_add_def dom_def split: option.splits) +lemma map_add_subsumed1: "f \\<^sub>m g \ f++g = g" +by (simp add: map_add_le_mapI map_le_antisym) + +lemma map_add_subsumed2: "f \\<^sub>m g \ g++f = g" +by (metis map_add_subsumed1 map_le_iff_map_add_commute) + lemma dom_eq_singleton_conv: "dom f = {x} \ (\v. f = [x \ v])" proof(rule iffI) assume "\v. f = [x \ v]"