# HG changeset patch # User urbanc # Date 1176698722 -7200 # Node ID ca804eb70d3940ed5e3336edf309925d76ddc1e5 # Parent 3ea6c1cb3dab16e70cb463c7937516c2159ec75d added a more usuable lemma for dealing with fresh_fun diff -r 3ea6c1cb3dab -r ca804eb70d39 src/HOL/Nominal/Nominal.thy --- a/src/HOL/Nominal/Nominal.thy Mon Apr 16 04:02:15 2007 +0200 +++ b/src/HOL/Nominal/Nominal.thy Mon Apr 16 06:45:22 2007 +0200 @@ -2483,6 +2483,18 @@ with b show "fr = h a" by force qed +lemma fresh_fun_app': + fixes h :: "'x\'a" + and a :: "'x" + assumes pt: "pt TYPE('a) TYPE('x)" + and at: "at TYPE('x)" + and f1: "finite ((supp h)::'x set)" + and a: "a\h" "a\h a" + shows "(fresh_fun h) = (h a)" +apply(rule fresh_fun_app[OF pt, OF at, OF f1]) +apply(auto simp add: fresh_prod intro: a) +done + lemma fresh_fun_equiv_ineq: fixes h :: "'y\'a" and pi:: "'x prm"