# HG changeset patch # User wenzelm # Date 1159733961 -7200 # Node ID cb6ae81dd0beb228d69b4cfd7d3b8d56d183ec5c # Parent cb7ec413f95dc7c126cb0ad18d3b569214f4f8aa merged with theory Datatype_Universe; diff -r cb7ec413f95d -r cb6ae81dd0be src/HOL/Datatype.thy --- a/src/HOL/Datatype.thy Sun Oct 01 18:30:04 2006 +0200 +++ b/src/HOL/Datatype.thy Sun Oct 01 22:19:21 2006 +0200 @@ -1,14 +1,548 @@ (* Title: HOL/Datatype.thy ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: Stefan Berghofer and Markus Wenzel, TU Muenchen + +Could <*> be generalized to a general summation (Sigma)? *) -header {* Datatypes *} +header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*} theory Datatype -imports Datatype_Universe +imports NatArith Sum_Type begin + +typedef (Node) + ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}" + --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*} + by auto + +text{*Datatypes will be represented by sets of type @{text node}*} + +types 'a item = "('a, unit) node set" + ('a, 'b) dtree = "('a, 'b) node set" + +consts + apfst :: "['a=>'c, 'a*'b] => 'c*'b" + Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))" + + Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node" + ndepth :: "('a, 'b) node => nat" + + Atom :: "('a + nat) => ('a, 'b) dtree" + Leaf :: "'a => ('a, 'b) dtree" + Numb :: "nat => ('a, 'b) dtree" + Scons :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree" + In0 :: "('a, 'b) dtree => ('a, 'b) dtree" + In1 :: "('a, 'b) dtree => ('a, 'b) dtree" + Lim :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree" + + ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree" + + uprod :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" + usum :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" + + Split :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" + Case :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" + + dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] + => (('a, 'b) dtree * ('a, 'b) dtree)set" + dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] + => (('a, 'b) dtree * ('a, 'b) dtree)set" + + +defs + + Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" + + (*crude "lists" of nats -- needed for the constructions*) + apfst_def: "apfst == (%f (x,y). (f(x),y))" + Push_def: "Push == (%b h. nat_case b h)" + + (** operations on S-expressions -- sets of nodes **) + + (*S-expression constructors*) + Atom_def: "Atom == (%x. {Abs_Node((%k. Inr 0, x))})" + Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" + + (*Leaf nodes, with arbitrary or nat labels*) + Leaf_def: "Leaf == Atom o Inl" + Numb_def: "Numb == Atom o Inr" + + (*Injections of the "disjoint sum"*) + In0_def: "In0(M) == Scons (Numb 0) M" + In1_def: "In1(M) == Scons (Numb 1) M" + + (*Function spaces*) + Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}" + + (*the set of nodes with depth less than k*) + ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" + ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n) R + |] ==> R" +by (force simp add: apfst_def) + +(** Push -- an injection, analogous to Cons on lists **) + +lemma Push_inject1: "Push i f = Push j g ==> i=j" +apply (simp add: Push_def expand_fun_eq) +apply (drule_tac x=0 in spec, simp) +done + +lemma Push_inject2: "Push i f = Push j g ==> f=g" +apply (auto simp add: Push_def expand_fun_eq) +apply (drule_tac x="Suc x" in spec, simp) +done + +lemma Push_inject: + "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" +by (blast dest: Push_inject1 Push_inject2) + +lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" +by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) + +lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] + + +(*** Introduction rules for Node ***) + +lemma Node_K0_I: "(%k. Inr 0, a) : Node" +by (simp add: Node_def) + +lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" +apply (simp add: Node_def Push_def) +apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) +done + + +subsection{*Freeness: Distinctness of Constructors*} + +(** Scons vs Atom **) + +lemma Scons_not_Atom [iff]: "Scons M N \ Atom(a)" +apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) +apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] + dest!: Abs_Node_inj + elim!: apfst_convE sym [THEN Push_neq_K0]) +done + +lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard] +declare Atom_not_Scons [iff] + +(*** Injectiveness ***) + +(** Atomic nodes **) + +lemma inj_Atom: "inj(Atom)" +apply (simp add: Atom_def) +apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) +done +lemmas Atom_inject = inj_Atom [THEN injD, standard] + +lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" +by (blast dest!: Atom_inject) + +lemma inj_Leaf: "inj(Leaf)" +apply (simp add: Leaf_def o_def) +apply (rule inj_onI) +apply (erule Atom_inject [THEN Inl_inject]) +done + +lemmas Leaf_inject = inj_Leaf [THEN injD, standard] +declare Leaf_inject [dest!] + +lemma inj_Numb: "inj(Numb)" +apply (simp add: Numb_def o_def) +apply (rule inj_onI) +apply (erule Atom_inject [THEN Inr_inject]) +done + +lemmas Numb_inject = inj_Numb [THEN injD, standard] +declare Numb_inject [dest!] + + +(** Injectiveness of Push_Node **) + +lemma Push_Node_inject: + "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P + |] ==> P" +apply (simp add: Push_Node_def) +apply (erule Abs_Node_inj [THEN apfst_convE]) +apply (rule Rep_Node [THEN Node_Push_I])+ +apply (erule sym [THEN apfst_convE]) +apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) +done + + +(** Injectiveness of Scons **) + +lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" +apply (simp add: Scons_def One_nat_def) +apply (blast dest!: Push_Node_inject) +done + +lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" +apply (simp add: Scons_def One_nat_def) +apply (blast dest!: Push_Node_inject) +done + +lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" +apply (erule equalityE) +apply (iprover intro: equalityI Scons_inject_lemma1) +done + +lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" +apply (erule equalityE) +apply (iprover intro: equalityI Scons_inject_lemma2) +done + +lemma Scons_inject: + "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" +by (iprover dest: Scons_inject1 Scons_inject2) + +lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" +by (blast elim!: Scons_inject) + +(*** Distinctness involving Leaf and Numb ***) + +(** Scons vs Leaf **) + +lemma Scons_not_Leaf [iff]: "Scons M N \ Leaf(a)" +by (simp add: Leaf_def o_def Scons_not_Atom) + +lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard] +declare Leaf_not_Scons [iff] + +(** Scons vs Numb **) + +lemma Scons_not_Numb [iff]: "Scons M N \ Numb(k)" +by (simp add: Numb_def o_def Scons_not_Atom) + +lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard] +declare Numb_not_Scons [iff] + + +(** Leaf vs Numb **) + +lemma Leaf_not_Numb [iff]: "Leaf(a) \ Numb(k)" +by (simp add: Leaf_def Numb_def) + +lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard] +declare Numb_not_Leaf [iff] + + +(*** ndepth -- the depth of a node ***) + +lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" +by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) + +lemma ndepth_Push_Node_aux: + "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" +apply (induct_tac "k", auto) +apply (erule Least_le) +done + +lemma ndepth_Push_Node: + "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" +apply (insert Rep_Node [of n, unfolded Node_def]) +apply (auto simp add: ndepth_def Push_Node_def + Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) +apply (rule Least_equality) +apply (auto simp add: Push_def ndepth_Push_Node_aux) +apply (erule LeastI) +done + + +(*** ntrunc applied to the various node sets ***) + +lemma ntrunc_0 [simp]: "ntrunc 0 M = {}" +by (simp add: ntrunc_def) + +lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" +by (auto simp add: Atom_def ntrunc_def ndepth_K0) + +lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" +by (simp add: Leaf_def o_def ntrunc_Atom) + +lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" +by (simp add: Numb_def o_def ntrunc_Atom) + +lemma ntrunc_Scons [simp]: + "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" +by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) + + + +(** Injection nodes **) + +lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}" +apply (simp add: In0_def) +apply (simp add: Scons_def) +done + +lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" +by (simp add: In0_def) + +lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}" +apply (simp add: In1_def) +apply (simp add: Scons_def) +done + +lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" +by (simp add: In1_def) + + +subsection{*Set Constructions*} + + +(*** Cartesian Product ***) + +lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" +by (simp add: uprod_def) + +(*The general elimination rule*) +lemma uprodE [elim!]: + "[| c : uprod A B; + !!x y. [| x:A; y:B; c = Scons x y |] ==> P + |] ==> P" +by (auto simp add: uprod_def) + + +(*Elimination of a pair -- introduces no eigenvariables*) +lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" +by (auto simp add: uprod_def) + + +(*** Disjoint Sum ***) + +lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" +by (simp add: usum_def) + +lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" +by (simp add: usum_def) + +lemma usumE [elim!]: + "[| u : usum A B; + !!x. [| x:A; u=In0(x) |] ==> P; + !!y. [| y:B; u=In1(y) |] ==> P + |] ==> P" +by (auto simp add: usum_def) + + +(** Injection **) + +lemma In0_not_In1 [iff]: "In0(M) \ In1(N)" +by (auto simp add: In0_def In1_def One_nat_def) + +lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard] +declare In1_not_In0 [iff] + +lemma In0_inject: "In0(M) = In0(N) ==> M=N" +by (simp add: In0_def) + +lemma In1_inject: "In1(M) = In1(N) ==> M=N" +by (simp add: In1_def) + +lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" +by (blast dest!: In0_inject) + +lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" +by (blast dest!: In1_inject) + +lemma inj_In0: "inj In0" +by (blast intro!: inj_onI) + +lemma inj_In1: "inj In1" +by (blast intro!: inj_onI) + + +(*** Function spaces ***) + +lemma Lim_inject: "Lim f = Lim g ==> f = g" +apply (simp add: Lim_def) +apply (rule ext) +apply (blast elim!: Push_Node_inject) +done + + +(*** proving equality of sets and functions using ntrunc ***) + +lemma ntrunc_subsetI: "ntrunc k M <= M" +by (auto simp add: ntrunc_def) + +lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" +by (auto simp add: ntrunc_def) + +(*A generalized form of the take-lemma*) +lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" +apply (rule equalityI) +apply (rule_tac [!] ntrunc_subsetD) +apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) +done + +lemma ntrunc_o_equality: + "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" +apply (rule ntrunc_equality [THEN ext]) +apply (simp add: expand_fun_eq) +done + + +(*** Monotonicity ***) + +lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" +by (simp add: uprod_def, blast) + +lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" +by (simp add: usum_def, blast) + +lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" +by (simp add: Scons_def, blast) + +lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" +by (simp add: In0_def subset_refl Scons_mono) + +lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" +by (simp add: In1_def subset_refl Scons_mono) + + +(*** Split and Case ***) + +lemma Split [simp]: "Split c (Scons M N) = c M N" +by (simp add: Split_def) + +lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" +by (simp add: Case_def) + +lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" +by (simp add: Case_def) + + + +(**** UN x. B(x) rules ****) + +lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" +by (simp add: ntrunc_def, blast) + +lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" +by (simp add: Scons_def, blast) + +lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" +by (simp add: Scons_def, blast) + +lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" +by (simp add: In0_def Scons_UN1_y) + +lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" +by (simp add: In1_def Scons_UN1_y) + + +(*** Equality for Cartesian Product ***) + +lemma dprodI [intro!]: + "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" +by (auto simp add: dprod_def) + +(*The general elimination rule*) +lemma dprodE [elim!]: + "[| c : dprod r s; + !!x y x' y'. [| (x,x') : r; (y,y') : s; + c = (Scons x y, Scons x' y') |] ==> P + |] ==> P" +by (auto simp add: dprod_def) + + +(*** Equality for Disjoint Sum ***) + +lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" +by (auto simp add: dsum_def) + +lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" +by (auto simp add: dsum_def) + +lemma dsumE [elim!]: + "[| w : dsum r s; + !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; + !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P + |] ==> P" +by (auto simp add: dsum_def) + + +(*** Monotonicity ***) + +lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" +by blast + +lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" +by blast + + +(*** Bounding theorems ***) + +lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" +by blast + +lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] + +(*Dependent version*) +lemma dprod_subset_Sigma2: + "(dprod (Sigma A B) (Sigma C D)) <= + Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" +by auto + +lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" +by blast + +lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] + + +(*** Domain ***) + +lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" +by auto + +lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" +by auto + + +subsection {* Finishing the datatype package setup *} + +text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *} +hide (open) const Push Node Atom Leaf Numb Lim Split Case +hide (open) type node item + + +section {* Datatypes *} + setup "DatatypeCodegen.setup2" subsection {* Representing primitive types *} @@ -275,4 +809,95 @@ code_const "OperationalEquality.eq \ 'a\eq option \ 'a option \ bool" (Haskell infixl 4 "==") +ML +{* +val apfst_conv = thm "apfst_conv"; +val apfst_convE = thm "apfst_convE"; +val Push_inject1 = thm "Push_inject1"; +val Push_inject2 = thm "Push_inject2"; +val Push_inject = thm "Push_inject"; +val Push_neq_K0 = thm "Push_neq_K0"; +val Abs_Node_inj = thm "Abs_Node_inj"; +val Node_K0_I = thm "Node_K0_I"; +val Node_Push_I = thm "Node_Push_I"; +val Scons_not_Atom = thm "Scons_not_Atom"; +val Atom_not_Scons = thm "Atom_not_Scons"; +val inj_Atom = thm "inj_Atom"; +val Atom_inject = thm "Atom_inject"; +val Atom_Atom_eq = thm "Atom_Atom_eq"; +val inj_Leaf = thm "inj_Leaf"; +val Leaf_inject = thm "Leaf_inject"; +val inj_Numb = thm "inj_Numb"; +val Numb_inject = thm "Numb_inject"; +val Push_Node_inject = thm "Push_Node_inject"; +val Scons_inject1 = thm "Scons_inject1"; +val Scons_inject2 = thm "Scons_inject2"; +val Scons_inject = thm "Scons_inject"; +val Scons_Scons_eq = thm "Scons_Scons_eq"; +val Scons_not_Leaf = thm "Scons_not_Leaf"; +val Leaf_not_Scons = thm "Leaf_not_Scons"; +val Scons_not_Numb = thm "Scons_not_Numb"; +val Numb_not_Scons = thm "Numb_not_Scons"; +val Leaf_not_Numb = thm "Leaf_not_Numb"; +val Numb_not_Leaf = thm "Numb_not_Leaf"; +val ndepth_K0 = thm "ndepth_K0"; +val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux"; +val ndepth_Push_Node = thm "ndepth_Push_Node"; +val ntrunc_0 = thm "ntrunc_0"; +val ntrunc_Atom = thm "ntrunc_Atom"; +val ntrunc_Leaf = thm "ntrunc_Leaf"; +val ntrunc_Numb = thm "ntrunc_Numb"; +val ntrunc_Scons = thm "ntrunc_Scons"; +val ntrunc_one_In0 = thm "ntrunc_one_In0"; +val ntrunc_In0 = thm "ntrunc_In0"; +val ntrunc_one_In1 = thm "ntrunc_one_In1"; +val ntrunc_In1 = thm "ntrunc_In1"; +val uprodI = thm "uprodI"; +val uprodE = thm "uprodE"; +val uprodE2 = thm "uprodE2"; +val usum_In0I = thm "usum_In0I"; +val usum_In1I = thm "usum_In1I"; +val usumE = thm "usumE"; +val In0_not_In1 = thm "In0_not_In1"; +val In1_not_In0 = thm "In1_not_In0"; +val In0_inject = thm "In0_inject"; +val In1_inject = thm "In1_inject"; +val In0_eq = thm "In0_eq"; +val In1_eq = thm "In1_eq"; +val inj_In0 = thm "inj_In0"; +val inj_In1 = thm "inj_In1"; +val Lim_inject = thm "Lim_inject"; +val ntrunc_subsetI = thm "ntrunc_subsetI"; +val ntrunc_subsetD = thm "ntrunc_subsetD"; +val ntrunc_equality = thm "ntrunc_equality"; +val ntrunc_o_equality = thm "ntrunc_o_equality"; +val uprod_mono = thm "uprod_mono"; +val usum_mono = thm "usum_mono"; +val Scons_mono = thm "Scons_mono"; +val In0_mono = thm "In0_mono"; +val In1_mono = thm "In1_mono"; +val Split = thm "Split"; +val Case_In0 = thm "Case_In0"; +val Case_In1 = thm "Case_In1"; +val ntrunc_UN1 = thm "ntrunc_UN1"; +val Scons_UN1_x = thm "Scons_UN1_x"; +val Scons_UN1_y = thm "Scons_UN1_y"; +val In0_UN1 = thm "In0_UN1"; +val In1_UN1 = thm "In1_UN1"; +val dprodI = thm "dprodI"; +val dprodE = thm "dprodE"; +val dsum_In0I = thm "dsum_In0I"; +val dsum_In1I = thm "dsum_In1I"; +val dsumE = thm "dsumE"; +val dprod_mono = thm "dprod_mono"; +val dsum_mono = thm "dsum_mono"; +val dprod_Sigma = thm "dprod_Sigma"; +val dprod_subset_Sigma = thm "dprod_subset_Sigma"; +val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2"; +val dsum_Sigma = thm "dsum_Sigma"; +val dsum_subset_Sigma = thm "dsum_subset_Sigma"; +val Domain_dprod = thm "Domain_dprod"; +val Domain_dsum = thm "Domain_dsum"; +*} + end