# HG changeset patch # User wenzelm # Date 1546551041 -3600 # Node ID cc6a21413f8a8bb65830a94f852fa7e883d23de5 # Parent e65314985426a22f1800061f45f4cd57a8f1e8ae tuned spelling; diff -r e65314985426 -r cc6a21413f8a src/FOL/ex/Intuitionistic.thy --- a/src/FOL/ex/Intuitionistic.thy Thu Jan 03 22:19:19 2019 +0100 +++ b/src/FOL/ex/Intuitionistic.thy Thu Jan 03 22:30:41 2019 +0100 @@ -26,7 +26,7 @@ Therefore $\neg P$ is classically provable iff it is intuitionistically provable. -Proof: Let $Q$ be the conjuction of the propositions $A\vee\neg A$, one for +Proof: Let $Q$ be the conjunction of the propositions $A\vee\neg A$, one for each atom $A$ in $P$. Now $\neg\neg Q$ is intuitionistically provable because $\neg\neg(A\vee\neg A)$ is and because double-negation distributes over conjunction. If $P$ is provable classically, then clearly $Q\rightarrow P$ is