# HG changeset patch # User haftmann # Date 1314431085 -7200 # Node ID cc878a3126733af45d2b0765a505471a5ee8a3af # Parent 9ab8c88449a4c7b932f645b07d1db9969d536e15 Cset, Dlist_Cset, List_Cset: restructured diff -r 9ab8c88449a4 -r cc878a312673 src/HOL/Library/Cset.thy --- a/src/HOL/Library/Cset.thy Sat Aug 27 09:02:25 2011 +0200 +++ b/src/HOL/Library/Cset.thy Sat Aug 27 09:44:45 2011 +0200 @@ -152,6 +152,10 @@ "set xs = Set (List.set xs)" hide_const (open) set +definition coset :: "'a list \ 'a Cset.set" where + "coset xs = Set (- List.set xs)" +hide_const (open) coset + text {* conversion from @{typ "'a Predicate.pred"} *} definition pred_of_cset :: "'a Cset.set \ 'a Predicate.pred" where @@ -200,6 +204,21 @@ by (simp add: set_def) hide_fact (open) set_def +lemma member_set [simp]: + "member (Cset.set xs) = (\x. x \ set xs)" + by (simp add: fun_eq_iff member_def) +hide_fact (open) member_set + +lemma set_of_coset [simp]: + "set_of (Cset.coset xs) = - set xs" + by (simp add: coset_def) +hide_fact (open) coset_def + +lemma member_coset [simp]: + "member (Cset.coset xs) = (\x. x \ - set xs)" + by (simp add: fun_eq_iff member_def) +hide_fact (open) member_coset + lemma set_simps [simp]: "Cset.set [] = Cset.empty" "Cset.set (x # xs) = insert x (Cset.set xs)" @@ -268,6 +287,82 @@ "single a = insert a Cset.empty" by (simp add: Cset.single_def) +lemma compl_set [simp]: + "- Cset.set xs = Cset.coset xs" + by (simp add: Cset.set_def Cset.coset_def) + +lemma compl_coset [simp]: + "- Cset.coset xs = Cset.set xs" + by (simp add: Cset.set_def Cset.coset_def) + +lemma member_cset_of: + "member = set_of" + by (rule ext)+ (simp add: member_def mem_def) + +lemma inter_project: + "inf A (Cset.set xs) = Cset.set (List.filter (Cset.member A) xs)" + "inf A (Cset.coset xs) = foldr Cset.remove xs A" +proof - + show "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)" + by (simp add: inter project_def Cset.set_def member_def) + have *: "\x::'a. Cset.remove = (\x. Set \ More_Set.remove x \ member)" + by (simp add: fun_eq_iff More_Set.remove_def member_cset_of) + have "member \ fold (\x. Set \ More_Set.remove x \ member) xs = + fold More_Set.remove xs \ member" + by (rule fold_commute) (simp add: fun_eq_iff mem_def) + then have "fold More_Set.remove xs (member A) = + member (fold (\x. Set \ More_Set.remove x \ member) xs A)" + by (simp add: fun_eq_iff) + then have "inf A (Cset.coset xs) = fold Cset.remove xs A" + by (simp add: Diff_eq [symmetric] minus_set * member_cset_of) + moreover have "\x y :: 'a. Cset.remove y \ Cset.remove x = Cset.remove x \ Cset.remove y" + by (auto simp add: More_Set.remove_def * member_cset_of) + ultimately show "inf A (Cset.coset xs) = foldr Cset.remove xs A" + by (simp add: foldr_fold) +qed + +lemma subtract_remove: + "A - Cset.set xs = foldr Cset.remove xs A" + "A - Cset.coset xs = Cset.set (List.filter (member A) xs)" + by (simp_all only: diff_eq compl_set compl_coset inter_project) + +lemma union_insert: + "sup (Cset.set xs) A = foldr Cset.insert xs A" + "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \ member A) xs)" +proof - + have *: "\x::'a. Cset.insert = (\x. Set \ Set.insert x \ member)" + by (simp add: fun_eq_iff member_cset_of) + have "member \ fold (\x. Set \ Set.insert x \ member) xs = + fold Set.insert xs \ member" + by (rule fold_commute) (simp add: fun_eq_iff mem_def) + then have "fold Set.insert xs (member A) = + member (fold (\x. Set \ Set.insert x \ member) xs A)" + by (simp add: fun_eq_iff) + then have "sup (Cset.set xs) A = fold Cset.insert xs A" + by (simp add: union_set * member_cset_of) + moreover have "\x y :: 'a. Cset.insert y \ Cset.insert x = Cset.insert x \ Cset.insert y" + by (auto simp add: * member_cset_of) + ultimately show "sup (Cset.set xs) A = foldr Cset.insert xs A" + by (simp add: foldr_fold) + show "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \ member A) xs)" + by (auto simp add: Cset.coset_def member_cset_of mem_def) +qed + +context complete_lattice +begin + +lemma Infimum_inf: + "Infimum (Cset.set As) = foldr inf As top" + "Infimum (Cset.coset []) = bot" + by (simp_all add: Inf_set_foldr) + +lemma Supremum_sup: + "Supremum (Cset.set As) = foldr sup As bot" + "Supremum (Cset.coset []) = top" + by (simp_all add: Sup_set_foldr) + +end + lemma of_pred_code [code]: "of_pred (Predicate.Seq f) = (case f () of Predicate.Empty \ Cset.empty @@ -287,6 +382,22 @@ apply simp_all done +lemma bind_set: + "Cset.bind (Cset.set xs) f = fold (sup \ f) xs (Cset.set [])" + by (simp add: Cset.bind_def SUPR_set_fold) +hide_fact (open) bind_set + +lemma pred_of_cset_set: + "pred_of_cset (Cset.set xs) = foldr sup (List.map Predicate.single xs) bot" +proof - + have "pred_of_cset (Cset.set xs) = Predicate.Pred (\x. x \ set xs)" + by (simp add: Cset.pred_of_cset_def member_set) + moreover have "foldr sup (List.map Predicate.single xs) bot = \" + by (induct xs) (auto simp add: bot_pred_def intro: pred_eqI, simp add: mem_def) + ultimately show ?thesis by simp +qed +hide_fact (open) pred_of_cset_set + no_notation bind (infixl "\=" 70) hide_const (open) is_empty insert remove map filter forall exists card diff -r 9ab8c88449a4 -r cc878a312673 src/HOL/Library/Dlist_Cset.thy --- a/src/HOL/Library/Dlist_Cset.thy Sat Aug 27 09:02:25 2011 +0200 +++ b/src/HOL/Library/Dlist_Cset.thy Sat Aug 27 09:44:45 2011 +0200 @@ -3,66 +3,44 @@ header {* Canonical implementation of sets by distinct lists *} theory Dlist_Cset -imports Dlist List_Cset +imports Dlist Cset begin definition Set :: "'a dlist \ 'a Cset.set" where "Set dxs = Cset.set (list_of_dlist dxs)" definition Coset :: "'a dlist \ 'a Cset.set" where - "Coset dxs = List_Cset.coset (list_of_dlist dxs)" + "Coset dxs = Cset.coset (list_of_dlist dxs)" code_datatype Set Coset -declare member_code [code del] -declare List_Cset.is_empty_set [code del] -declare List_Cset.empty_set [code del] -declare List_Cset.UNIV_set [code del] -declare insert_set [code del] -declare remove_set [code del] -declare compl_set [code del] -declare compl_coset [code del] -declare map_set [code del] -declare filter_set [code del] -declare forall_set [code del] -declare exists_set [code del] -declare card_set [code del] -declare List_Cset.single_set [code del] -declare List_Cset.bind_set [code del] -declare List_Cset.pred_of_cset_set [code del] -declare inter_project [code del] -declare subtract_remove [code del] -declare union_insert [code del] -declare Infimum_inf [code del] -declare Supremum_sup [code del] - lemma Set_Dlist [simp]: - "Set (Dlist xs) = Cset.Set (set xs)" + "Set (Dlist xs) = Cset.set xs" by (rule Cset.set_eqI) (simp add: Set_def) lemma Coset_Dlist [simp]: - "Coset (Dlist xs) = Cset.Set (- set xs)" + "Coset (Dlist xs) = Cset.coset xs" by (rule Cset.set_eqI) (simp add: Coset_def) lemma member_Set [simp]: "Cset.member (Set dxs) = List.member (list_of_dlist dxs)" - by (simp add: Set_def member_set) + by (simp add: Set_def fun_eq_iff List.member_def) lemma member_Coset [simp]: "Cset.member (Coset dxs) = Not \ List.member (list_of_dlist dxs)" - by (simp add: Coset_def member_set not_set_compl) + by (simp add: Coset_def fun_eq_iff List.member_def) lemma Set_dlist_of_list [code]: "Cset.set xs = Set (dlist_of_list xs)" by (rule Cset.set_eqI) simp lemma Coset_dlist_of_list [code]: - "List_Cset.coset xs = Coset (dlist_of_list xs)" + "Cset.coset xs = Coset (dlist_of_list xs)" by (rule Cset.set_eqI) simp lemma is_empty_Set [code]: "Cset.is_empty (Set dxs) \ Dlist.null dxs" - by (simp add: Dlist.null_def List.null_def member_set) + by (simp add: Dlist.null_def List.null_def Set_def) lemma bot_code [code]: "bot = Set Dlist.empty" @@ -70,47 +48,47 @@ lemma top_code [code]: "top = Coset Dlist.empty" - by (simp add: empty_def) + by (simp add: empty_def Cset.coset_def) lemma insert_code [code]: "Cset.insert x (Set dxs) = Set (Dlist.insert x dxs)" "Cset.insert x (Coset dxs) = Coset (Dlist.remove x dxs)" - by (simp_all add: Dlist.insert_def Dlist.remove_def member_set not_set_compl) + by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def) lemma remove_code [code]: "Cset.remove x (Set dxs) = Set (Dlist.remove x dxs)" "Cset.remove x (Coset dxs) = Coset (Dlist.insert x dxs)" - by (auto simp add: Dlist.insert_def Dlist.remove_def member_set not_set_compl) + by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def Compl_insert) lemma member_code [code]: "Cset.member (Set dxs) = Dlist.member dxs" "Cset.member (Coset dxs) = Not \ Dlist.member dxs" - by (simp_all add: member_def) + by (simp_all add: List.member_def member_def fun_eq_iff Dlist.member_def) lemma compl_code [code]: "- Set dxs = Coset dxs" "- Coset dxs = Set dxs" - by (rule Cset.set_eqI, simp add: member_set not_set_compl)+ + by (rule Cset.set_eqI, simp add: fun_eq_iff List.member_def Set_def Coset_def)+ lemma map_code [code]: "Cset.map f (Set dxs) = Set (Dlist.map f dxs)" - by (rule Cset.set_eqI) (simp add: member_set) + by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def) lemma filter_code [code]: "Cset.filter f (Set dxs) = Set (Dlist.filter f dxs)" - by (rule Cset.set_eqI) (simp add: member_set) + by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def) lemma forall_Set [code]: "Cset.forall P (Set xs) \ list_all P (list_of_dlist xs)" - by (simp add: member_set list_all_iff) + by (simp add: Set_def list_all_iff) lemma exists_Set [code]: "Cset.exists P (Set xs) \ list_ex P (list_of_dlist xs)" - by (simp add: member_set list_ex_iff) + by (simp add: Set_def list_ex_iff) lemma card_code [code]: "Cset.card (Set dxs) = Dlist.length dxs" - by (simp add: length_def member_set distinct_card) + by (simp add: length_def Set_def distinct_card) lemma inter_code [code]: "inf A (Set xs) = Set (Dlist.filter (Cset.member A) xs)" @@ -143,13 +121,15 @@ declare Cset.single_code[code] lemma bind_set [code]: - "Cset.bind (Dlist_Cset.Set xs) f = foldl (\A x. sup A (f x)) Cset.empty (list_of_dlist xs)" -by(simp add: List_Cset.bind_set Dlist_Cset.Set_def) + "Cset.bind (Dlist_Cset.Set xs) f = fold (sup \ f) (list_of_dlist xs) Cset.empty" + by (simp add: Cset.bind_set Set_def) hide_fact (open) bind_set lemma pred_of_cset_set [code]: "pred_of_cset (Dlist_Cset.Set xs) = foldr sup (map Predicate.single (list_of_dlist xs)) bot" -by(simp add: List_Cset.pred_of_cset_set Dlist_Cset.Set_def) + by (simp add: Cset.pred_of_cset_set Dlist_Cset.Set_def) hide_fact (open) pred_of_cset_set +export_code "Cset._" in Haskell + end diff -r 9ab8c88449a4 -r cc878a312673 src/HOL/Library/List_Cset.thy --- a/src/HOL/Library/List_Cset.thy Sat Aug 27 09:02:25 2011 +0200 +++ b/src/HOL/Library/List_Cset.thy Sat Aug 27 09:44:45 2011 +0200 @@ -7,28 +7,12 @@ imports Cset begin -declare mem_def [simp] -declare Cset.set_code [code del] - -definition coset :: "'a list \ 'a Cset.set" where - "coset xs = Set (- set xs)" -hide_const (open) coset - -lemma set_of_coset [simp]: - "set_of (List_Cset.coset xs) = - set xs" - by (simp add: coset_def) - -lemma member_coset [simp]: - "member (List_Cset.coset xs) = (\x. x \ - set xs)" - by (simp add: coset_def fun_eq_iff) -hide_fact (open) member_coset - -code_datatype Cset.set List_Cset.coset +code_datatype Cset.set Cset.coset lemma member_code [code]: "member (Cset.set xs) = List.member xs" - "member (List_Cset.coset xs) = Not \ List.member xs" - by (simp_all add: fun_eq_iff member_def fun_Compl_def member_set) + "member (Cset.coset xs) = Not \ List.member xs" + by (simp_all add: fun_eq_iff List.member_def) definition (in term_syntax) setify :: "'a\typerep list \ (unit \ Code_Evaluation.term) @@ -60,24 +44,27 @@ lemma empty_set [code]: "Cset.empty = Cset.set []" - by (simp add: set_def) + by simp hide_fact (open) empty_set lemma UNIV_set [code]: - "top = List_Cset.coset []" - by (simp add: coset_def) + "top = Cset.coset []" + by (simp add: Cset.coset_def) hide_fact (open) UNIV_set lemma remove_set [code]: "Cset.remove x (Cset.set xs) = Cset.set (removeAll x xs)" - "Cset.remove x (List_Cset.coset xs) = List_Cset.coset (List.insert x xs)" -by (simp_all add: Cset.set_def coset_def) - (metis List.set_insert More_Set.remove_def remove_set_compl) + "Cset.remove x (Cset.coset xs) = Cset.coset (List.insert x xs)" + by (simp_all add: Cset.set_def Cset.coset_def Compl_insert) lemma insert_set [code]: "Cset.insert x (Cset.set xs) = Cset.set (List.insert x xs)" - "Cset.insert x (List_Cset.coset xs) = List_Cset.coset (removeAll x xs)" - by (simp_all add: Cset.set_def coset_def) + "Cset.insert x (Cset.coset xs) = Cset.coset (removeAll x xs)" + by (simp_all add: Cset.set_def Cset.coset_def) + +declare compl_set [code] +declare compl_coset [code] +declare subtract_remove [cpde] lemma map_set [code]: "Cset.map f (Cset.set xs) = Cset.set (remdups (List.map f xs))" @@ -103,26 +90,11 @@ then show ?thesis by (simp add: Cset.set_def) qed -lemma compl_set [simp, code]: - "- Cset.set xs = List_Cset.coset xs" - by (simp add: Cset.set_def coset_def) - -lemma compl_coset [simp, code]: - "- List_Cset.coset xs = Cset.set xs" - by (simp add: Cset.set_def coset_def) - context complete_lattice begin -lemma Infimum_inf [code]: - "Infimum (Cset.set As) = foldr inf As top" - "Infimum (List_Cset.coset []) = bot" - by (simp_all add: Inf_set_foldr) - -lemma Supremum_sup [code]: - "Supremum (Cset.set As) = foldr sup As bot" - "Supremum (List_Cset.coset []) = top" - by (simp_all add: Sup_set_foldr) +declare Infimum_inf [code] +declare Supremum_sup [code] end @@ -132,20 +104,8 @@ by(simp add: Cset.single_code) hide_fact (open) single_set -lemma bind_set [code]: - "Cset.bind (Cset.set xs) f = fold (sup \ f) xs (Cset.set [])" - by (simp add: Cset.bind_def SUPR_set_fold) - -lemma pred_of_cset_set [code]: - "pred_of_cset (Cset.set xs) = foldr sup (map Predicate.single xs) bot" -proof - - have "pred_of_cset (Cset.set xs) = Predicate.Pred (\x. x \ set xs)" - by (simp add: Cset.pred_of_cset_def member_code member_set) - moreover have "foldr sup (map Predicate.single xs) bot = \" - by (induct xs) (auto simp add: bot_pred_def simp del: mem_def intro: pred_eqI, simp) - ultimately show ?thesis by simp -qed -hide_fact (open) pred_of_cset_set +declare Cset.bind_set [code] +declare Cset.pred_of_cset_set [code] subsection {* Derived operations *} @@ -165,7 +125,7 @@ "HOL.equal A B \ A \ B \ B \ (A :: 'a Cset.set)" instance proof -qed (simp add: equal_set_def set_eq [symmetric] Cset.set_eq_iff fun_eq_iff member_def) +qed (auto simp add: equal_set_def Cset.set_eq_iff Cset.member_def fun_eq_iff mem_def) end @@ -176,59 +136,7 @@ subsection {* Functorial operations *} -lemma member_cset_of: - "member = set_of" - by (rule ext)+ (simp add: member_def) - -lemma inter_project [code]: - "inf A (Cset.set xs) = Cset.set (List.filter (Cset.member A) xs)" - "inf A (List_Cset.coset xs) = foldr Cset.remove xs A" -proof - - show "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)" - by (simp add: inter project_def Cset.set_def member_cset_of) - have *: "\x::'a. Cset.remove = (\x. Set \ More_Set.remove x \ member)" - by (simp add: fun_eq_iff More_Set.remove_def member_cset_of) - have "member \ fold (\x. Set \ More_Set.remove x \ member) xs = - fold More_Set.remove xs \ member" - by (rule fold_commute) (simp add: fun_eq_iff) - then have "fold More_Set.remove xs (member A) = - member (fold (\x. Set \ More_Set.remove x \ member) xs A)" - by (simp add: fun_eq_iff) - then have "inf A (List_Cset.coset xs) = fold Cset.remove xs A" - by (simp add: Diff_eq [symmetric] minus_set * member_cset_of) - moreover have "\x y :: 'a. Cset.remove y \ Cset.remove x = Cset.remove x \ Cset.remove y" - by (auto simp add: More_Set.remove_def * member_cset_of intro: ext) - ultimately show "inf A (List_Cset.coset xs) = foldr Cset.remove xs A" - by (simp add: foldr_fold) -qed - -lemma subtract_remove [code]: - "A - Cset.set xs = foldr Cset.remove xs A" - "A - List_Cset.coset xs = Cset.set (List.filter (member A) xs)" - by (simp_all only: diff_eq compl_set compl_coset inter_project) - -lemma union_insert [code]: - "sup (Cset.set xs) A = foldr Cset.insert xs A" - "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \ member A) xs)" -proof - - have *: "\x::'a. Cset.insert = (\x. Set \ Set.insert x \ member)" - by (simp add: fun_eq_iff member_cset_of) - have "member \ fold (\x. Set \ Set.insert x \ member) xs = - fold Set.insert xs \ member" - by (rule fold_commute) (simp add: fun_eq_iff) - then have "fold Set.insert xs (member A) = - member (fold (\x. Set \ Set.insert x \ member) xs A)" - by (simp add: fun_eq_iff) - then have "sup (Cset.set xs) A = fold Cset.insert xs A" - by (simp add: union_set * member_cset_of) - moreover have "\x y :: 'a. Cset.insert y \ Cset.insert x = Cset.insert x \ Cset.insert y" - by (auto simp add: * member_cset_of intro: ext) - ultimately show "sup (Cset.set xs) A = foldr Cset.insert xs A" - by (simp add: foldr_fold) - show "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \ member A) xs)" - by (auto simp add: coset_def member_cset_of) -qed - -declare mem_def[simp del] +declare inter_project [code] +declare union_insert [code] end