# HG changeset patch # User huffman # Date 1315155952 25200 # Node ID cd8dbfc272df69a8cbc9f1e28c02d68e35a407af # Parent 9caf6883f1f479fbce58af2a849bb8fa8b9de369 remove redundant lemmas expi_add and expi_zero diff -r 9caf6883f1f4 -r cd8dbfc272df NEWS --- a/NEWS Sun Sep 04 09:49:45 2011 -0700 +++ b/NEWS Sun Sep 04 10:05:52 2011 -0700 @@ -277,6 +277,8 @@ realpow_two_diff ~> square_diff_square_factored reals_complete2 ~> complete_real exp_ln_eq ~> ln_unique + expi_add ~> exp_add + expi_zero ~> exp_zero lemma_DERIV_subst ~> DERIV_cong LIMSEQ_Zfun_iff ~> tendsto_Zfun_iff LIMSEQ_const ~> tendsto_const diff -r 9caf6883f1f4 -r cd8dbfc272df src/HOL/Complex.thy --- a/src/HOL/Complex.thy Sun Sep 04 09:49:45 2011 -0700 +++ b/src/HOL/Complex.thy Sun Sep 04 10:05:52 2011 -0700 @@ -736,12 +736,6 @@ lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" by (auto simp add: DeMoivre) -lemma expi_add: "expi(a + b) = expi(a) * expi(b)" - by (rule exp_add) (* FIXME: redundant *) - -lemma expi_zero: "expi (0::complex) = 1" - by (rule exp_zero) (* FIXME: redundant *) - lemma complex_expi_Ex: "\a r. z = complex_of_real r * expi a" apply (insert rcis_Ex [of z]) apply (auto simp add: expi_def rcis_def mult_assoc [symmetric]) diff -r 9caf6883f1f4 -r cd8dbfc272df src/HOL/NSA/NSComplex.thy --- a/src/HOL/NSA/NSComplex.thy Sun Sep 04 09:49:45 2011 -0700 +++ b/src/HOL/NSA/NSComplex.thy Sun Sep 04 10:05:52 2011 -0700 @@ -613,7 +613,7 @@ by (simp add: NSDeMoivre_ext) lemma hexpi_add: "!!a b. hexpi(a + b) = hexpi(a) * hexpi(b)" -by transfer (rule expi_add) +by transfer (rule exp_add) subsection{*@{term hcomplex_of_complex}: the Injection from