# HG changeset patch # User wenzelm # Date 1664355613 -7200 # Node ID cf7db6353322cfc5e10d33c05bd21fc1fea69991 # Parent 728f38b016c05fb8f525467ce9d403b194aafaa6 recover informal "&" from 0c18df79b1c8; diff -r 728f38b016c0 -r cf7db6353322 src/ZF/AC/AC15_WO6.thy --- a/src/ZF/AC/AC15_WO6.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/AC/AC15_WO6.thy Wed Sep 28 11:00:13 2022 +0200 @@ -16,7 +16,7 @@ So we don't have to prove all implications of both cases. Moreover we don't need to prove AC13(1) \ AC1 and AC11 \ AC14 as -Rubin \ Rubin do. +Rubin & Rubin do. *) theory AC15_WO6 @@ -251,7 +251,7 @@ by (unfold AC13_def AC14_def AC15_def, fast) (* ********************************************************************** *) -(* The redundant proofs; however cited by Rubin \ Rubin *) +(* The redundant proofs; however cited by Rubin & Rubin *) (* ********************************************************************** *) (* ********************************************************************** *) diff -r 728f38b016c0 -r cf7db6353322 src/ZF/AC/AC17_AC1.thy --- a/src/ZF/AC/AC17_AC1.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/AC/AC17_AC1.thy Wed Sep 28 11:00:13 2022 +0200 @@ -13,7 +13,7 @@ (** AC0 is equivalent to AC1. - AC0 comes from Suppes, AC1 from Rubin \ Rubin **) + AC0 comes from Suppes, AC1 from Rubin & Rubin **) lemma AC0_AC1_lemma: "\f:(\X \ A. X); D \ A\ \ \g. g:(\X \ D. X)" by (fast intro!: lam_type apply_type) @@ -262,7 +262,7 @@ (* ********************************************************************** *) -(* AC5 \ AC4, Rubin \ Rubin, p. 11 *) +(* AC5 \ AC4, Rubin & Rubin, p. 11 *) (* ********************************************************************** *) lemma AC5_AC4_aux1: "R \ A*B \ (\x \ R. fst(x)) \ R -> A" diff -r 728f38b016c0 -r cf7db6353322 src/ZF/AC/AC7_AC9.thy --- a/src/ZF/AC/AC7_AC9.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/AC/AC7_AC9.thy Wed Sep 28 11:00:13 2022 +0200 @@ -48,7 +48,7 @@ by (unfold AC6_def AC7_def, blast) (* ********************************************************************** *) -(* AC7 \ AC6, Rubin \ Rubin p. 12, Theorem 2.8 *) +(* AC7 \ AC6, Rubin & Rubin p. 12, Theorem 2.8 *) (* The case of the empty family of sets added in order to complete *) (* the proof. *) (* ********************************************************************** *) @@ -104,7 +104,7 @@ (* ********************************************************************** *) (* AC8 \ AC9 *) -(* - this proof replaces the following two from Rubin \ Rubin: *) +(* - this proof replaces the following two from Rubin & Rubin: *) (* AC8 \ AC1 and AC1 \ AC9 *) (* ********************************************************************** *) @@ -124,7 +124,7 @@ (* ********************************************************************** *) (* AC9 \ AC1 *) (* The idea of this proof comes from "Equivalents of the Axiom of Choice" *) -(* by Rubin \ Rubin. But (x * y) is not necessarily equipollent to *) +(* by Rubin & Rubin. But (x * y) is not necessarily equipollent to *) (* (x * y) \ {0} when y is a set of total functions acting from nat to *) (* \(A) -- therefore we have used the set (y * nat) instead of y. *) (* ********************************************************************** *) diff -r 728f38b016c0 -r cf7db6353322 src/ZF/AC/WO1_WO7.thy --- a/src/ZF/AC/WO1_WO7.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/AC/WO1_WO7.thy Wed Sep 28 11:00:13 2022 +0200 @@ -2,7 +2,7 @@ Author: Lawrence C Paulson, CU Computer Laboratory Copyright 1998 University of Cambridge -WO7 \ LEMMA \ WO1 (Rubin \ Rubin p. 5) +WO7 \ LEMMA \ WO1 (Rubin & Rubin p. 5) LEMMA is the sentence denoted by (**) Also, WO1 \ WO8 @@ -93,14 +93,14 @@ (* ********************************************************************** *) -(* The proof of WO8 \ WO1 (Rubin \ Rubin p. 6) *) +(* The proof of WO8 \ WO1 (Rubin & Rubin p. 6) *) (* ********************************************************************** *) lemma WO1_WO8: "WO1 \ WO8" by (unfold WO1_def WO8_def, fast) -(* The implication "WO8 \ WO1": a faithful image of Rubin \ Rubin's proof*) +(* The implication "WO8 \ WO1": a faithful image of Rubin & Rubin's proof*) lemma WO8_WO1: "WO8 \ WO1" unfolding WO1_def WO8_def apply (rule allI) diff -r 728f38b016c0 -r cf7db6353322 src/ZF/AC/WO2_AC16.thy --- a/src/ZF/AC/WO2_AC16.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/AC/WO2_AC16.thy Wed Sep 28 11:00:13 2022 +0200 @@ -9,7 +9,7 @@ The first instance is trivial, the third not difficult, but the second is very complicated requiring many lemmas. We also need to prove that at any stage gamma the set -(s - \(...) - k_gamma) (Rubin \ Rubin page 15) +(s - \(...) - k_gamma) (Rubin & Rubin page 15) contains m distinct elements (in fact is equipollent to s) *) @@ -148,7 +148,7 @@ First quite complicated proof of the fact used in the recursive construction of the family T_gamma (WO2 \ AC16(k #+ m, k)) - the fact that at any stage gamma the set (s - \(...) - k_gamma) is equipollent to s - (Rubin \ Rubin page 15). + (Rubin & Rubin page 15). *) (* ********************************************************************** *) diff -r 728f38b016c0 -r cf7db6353322 src/ZF/AC/WO6_WO1.thy --- a/src/ZF/AC/WO6_WO1.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/AC/WO6_WO1.thy Wed Sep 28 11:00:13 2022 +0200 @@ -5,7 +5,7 @@ The only hard one is WO6 \ WO1. Every proof (except WO6 \ WO1 and WO1 \ WO2) are described as "clear" -by Rubin \ Rubin (page 2). +by Rubin & Rubin (page 2). They refer reader to a book by Gödel to see the proof WO1 \ WO2. Fortunately order types made this proof also very easy. *) @@ -127,7 +127,7 @@ (* ********************************************************************** The proof of "WO6 \ WO1". Simplified by L C Paulson. - From the book "Equivalents of the Axiom of Choice" by Rubin \ Rubin, + From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin, pages 2-5 ************************************************************************* *) @@ -439,7 +439,7 @@ done (* ********************************************************************** *) -(* Rubin \ Rubin wrote, *) +(* Rubin & Rubin wrote, *) (* "It follows from (ii) and mathematical induction that if y*y \ y then *) (* y can be well-ordered" *) diff -r 728f38b016c0 -r cf7db6353322 src/ZF/Induct/PropLog.thy --- a/src/ZF/Induct/PropLog.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/Induct/PropLog.thy Wed Sep 28 11:00:13 2022 +0200 @@ -1,5 +1,5 @@ (* Title: ZF/Induct/PropLog.thy - Author: Tobias Nipkow \ Lawrence C Paulson + Author: Tobias Nipkow & Lawrence C Paulson Copyright 1993 University of Cambridge *) diff -r 728f38b016c0 -r cf7db6353322 src/ZF/ex/Commutation.thy --- a/src/ZF/ex/Commutation.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/ex/Commutation.thy Wed Sep 28 11:00:13 2022 +0200 @@ -1,5 +1,5 @@ (* Title: ZF/ex/Commutation.thy - Author: Tobias Nipkow \ Sidi Ould Ehmety + Author: Tobias Nipkow & Sidi Ould Ehmety Copyright 1995 TU Muenchen Commutation theory for proving the Church Rosser theorem. diff -r 728f38b016c0 -r cf7db6353322 src/ZF/ex/NatSum.thy --- a/src/ZF/ex/NatSum.thy Tue Sep 27 22:57:30 2022 +0100 +++ b/src/ZF/ex/NatSum.thy Wed Sep 28 11:00:13 2022 +0200 @@ -1,5 +1,5 @@ (* Title: ZF/ex/NatSum.thy - Author: Tobias Nipkow \ Lawrence C Paulson + Author: Tobias Nipkow & Lawrence C Paulson A summation operator. sum(f,n+1) is the sum of all f(i), i=0...n.