# HG changeset patch # User paulson # Date 1664360629 -3600 # Node ID cf8f85e2a8071b8ac3b5dbe4d17aadfd56a66d99 # Parent cf7db6353322cfc5e10d33c05bd21fc1fea69991 fixed some theory presentation issues (?) diff -r cf7db6353322 -r cf8f85e2a807 src/ZF/AC/HH.thy --- a/src/ZF/AC/HH.thy Wed Sep 28 11:00:13 2022 +0200 +++ b/src/ZF/AC/HH.thy Wed Sep 28 11:23:49 2022 +0100 @@ -126,7 +126,7 @@ apply (erule_tac [2] ltI [OF _ Ord_Least], assumption) done -subsection\Lemmas used in the proofs of AC1 \ WO2 and AC17 \ AC1\ +subsection\Lemmas used in the proofs of @{term "AC1 \ WO2"} and @{term "AC17 \ AC1"}\ lemma lam_Least_HH_inj_Pow: "(\a \ (\ i. HH(f,x,i)={x}). HH(f,x,a)) @@ -213,7 +213,7 @@ lam_sing_bij [THEN bij_converse_bij]] -subsection\The proof of AC1 \ WO2\ +subsection\The proof of @{term "AC1 \ WO2"}\ (*Establishing the existence of a bijection, namely converse @@ -236,10 +236,9 @@ lemma AC1_WO2: "AC1 \ WO2" unfolding AC1_def WO2_def eqpoll_def -apply (intro allI) -apply (drule_tac x = "Pow(A) - {0}" in spec) -apply (blast dest: bijection) -done + apply (intro allI) + apply (drule_tac x = "Pow(A) - {0}" in spec) + apply (blast dest: bijection) + done end - diff -r cf7db6353322 -r cf8f85e2a807 src/ZF/Constructible/AC_in_L.thy --- a/src/ZF/Constructible/AC_in_L.thy Wed Sep 28 11:00:13 2022 +0200 +++ b/src/ZF/Constructible/AC_in_L.thy Wed Sep 28 11:23:49 2022 +0100 @@ -453,7 +453,7 @@ text\Every constructible set is well-ordered! Therefore the Wellordering Theorem and - the Axiom of Choice hold in \<^term>\L\\\ + the Axiom of Choice hold in \<^term>\L\!\ theorem L_implies_AC: assumes x: "L(x)" shows "\r. well_ord(x,r)" using Transset_Lset x apply (simp add: Transset_def L_def) diff -r cf7db6353322 -r cf8f85e2a807 src/ZF/Constructible/DPow_absolute.thy --- a/src/ZF/Constructible/DPow_absolute.thy Wed Sep 28 11:00:13 2022 +0200 +++ b/src/ZF/Constructible/DPow_absolute.thy Wed Sep 28 11:23:49 2022 +0100 @@ -13,7 +13,7 @@ subsubsection\The Operator \<^term>\is_formula_rec\\ text\The three arguments of \<^term>\p\ are always 2, 1, 0. It is buried - within 11 quantifiers\\ + within 11 quantifiers!\ (* is_formula_rec :: "[i\o, [i,i,i]\o, i, i] \ o" "is_formula_rec(M,MH,p,z) \ @@ -595,15 +595,10 @@ subsubsection\Actually Instantiating \M_Lset\\ lemma M_Lset_axioms_L: "M_Lset_axioms(L)" - apply (rule M_Lset_axioms.intro) - apply (assumption | rule strong_rep transrec_rep)+ - done + by (blast intro: M_Lset_axioms.intro strong_rep transrec_rep) theorem M_Lset_L: "M_Lset(L)" - apply (rule M_Lset.intro) - apply (rule M_DPow_L) - apply (rule M_Lset_axioms_L) - done + by (blast intro: M_Lset.intro M_DPow_L M_Lset_axioms_L) text\Finally: the point of the whole theory!\ lemmas Lset_closed = M_Lset.Lset_closed [OF M_Lset_L] @@ -619,9 +614,12 @@ theorem V_equals_L_in_L: "L(x) \ constructible(L,x)" -apply (simp add: constructible_def Lset_abs Lset_closed) -apply (simp add: L_def) -apply (blast intro: Ord_in_L) -done +proof - + have "L(x) \ (\i[L]. Ord(i) \ x \ Lset(i))" + by (auto simp add: L_def intro: Ord_in_L) + moreover have "\ \ constructible(L,x)" + by (simp add: constructible_def Lset_abs Lset_closed) + ultimately show ?thesis by blast +qed end