# HG changeset patch # User wenzelm # Date 1266257805 -3600 # Node ID d137efecf79369e599323c4312bb883bdc617b9e # Parent 7e24282f2dd7620ee299c86fd11438df999522ea tuned document; diff -r 7e24282f2dd7 -r d137efecf793 src/HOL/Record.thy --- a/src/HOL/Record.thy Mon Feb 15 18:50:16 2010 +0100 +++ b/src/HOL/Record.thy Mon Feb 15 19:16:45 2010 +0100 @@ -79,48 +79,64 @@ subsection {* Operators and lemmas for types isomorphic to tuples *} -datatype ('a, 'b, 'c) tuple_isomorphism = Tuple_Isomorphism "'a \ 'b \ 'c" "'b \ 'c \ 'a" +datatype ('a, 'b, 'c) tuple_isomorphism = + Tuple_Isomorphism "'a \ 'b \ 'c" "'b \ 'c \ 'a" -primrec repr :: "('a, 'b, 'c) tuple_isomorphism \ 'a \ 'b \ 'c" where +primrec + repr :: "('a, 'b, 'c) tuple_isomorphism \ 'a \ 'b \ 'c" where "repr (Tuple_Isomorphism r a) = r" -primrec abst :: "('a, 'b, 'c) tuple_isomorphism \ 'b \ 'c \ 'a" where +primrec + abst :: "('a, 'b, 'c) tuple_isomorphism \ 'b \ 'c \ 'a" where "abst (Tuple_Isomorphism r a) = a" -definition iso_tuple_fst :: "('a, 'b, 'c) tuple_isomorphism \ 'a \ 'b" where +definition + iso_tuple_fst :: "('a, 'b, 'c) tuple_isomorphism \ 'a \ 'b" where "iso_tuple_fst isom = fst \ repr isom" -definition iso_tuple_snd :: "('a, 'b, 'c) tuple_isomorphism \ 'a \ 'c" where +definition + iso_tuple_snd :: "('a, 'b, 'c) tuple_isomorphism \ 'a \ 'c" where "iso_tuple_snd isom = snd \ repr isom" -definition iso_tuple_fst_update :: "('a, 'b, 'c) tuple_isomorphism \ ('b \ 'b) \ ('a \ 'a)" where +definition + iso_tuple_fst_update :: + "('a, 'b, 'c) tuple_isomorphism \ ('b \ 'b) \ ('a \ 'a)" where "iso_tuple_fst_update isom f = abst isom \ apfst f \ repr isom" -definition iso_tuple_snd_update :: "('a, 'b, 'c) tuple_isomorphism \ ('c \ 'c) \ ('a \ 'a)" where +definition + iso_tuple_snd_update :: + "('a, 'b, 'c) tuple_isomorphism \ ('c \ 'c) \ ('a \ 'a)" where "iso_tuple_snd_update isom f = abst isom \ apsnd f \ repr isom" -definition iso_tuple_cons :: "('a, 'b, 'c) tuple_isomorphism \ 'b \ 'c \ 'a" where +definition + iso_tuple_cons :: + "('a, 'b, 'c) tuple_isomorphism \ 'b \ 'c \ 'a" where "iso_tuple_cons isom = curry (abst isom)" subsection {* Logical infrastructure for records *} -definition iso_tuple_surjective_proof_assist :: "'a \ 'b \ ('a \ 'b) \ bool" where +definition + iso_tuple_surjective_proof_assist :: "'a \ 'b \ ('a \ 'b) \ bool" where "iso_tuple_surjective_proof_assist x y f \ f x = y" -definition iso_tuple_update_accessor_cong_assist :: "(('b \ 'b) \ ('a \ 'a)) \ ('a \ 'b) \ bool" where - "iso_tuple_update_accessor_cong_assist upd acc \ +definition + iso_tuple_update_accessor_cong_assist :: + "(('b \ 'b) \ ('a \ 'a)) \ ('a \ 'b) \ bool" where + "iso_tuple_update_accessor_cong_assist upd acc \ (\f v. upd (\x. f (acc v)) v = upd f v) \ (\v. upd id v = v)" -definition iso_tuple_update_accessor_eq_assist :: "(('b \ 'b) \ ('a \ 'a)) \ ('a \ 'b) \ 'a \ ('b \ 'b) \ 'a \ 'b \ bool" where +definition + iso_tuple_update_accessor_eq_assist :: + "(('b \ 'b) \ ('a \ 'a)) \ ('a \ 'b) \ 'a \ ('b \ 'b) \ 'a \ 'b \ bool" where "iso_tuple_update_accessor_eq_assist upd acc v f v' x \ upd f v = v' \ acc v = x \ iso_tuple_update_accessor_cong_assist upd acc" lemma update_accessor_congruence_foldE: assumes uac: "iso_tuple_update_accessor_cong_assist upd acc" - and r: "r = r'" and v: "acc r' = v'" - and f: "\v. v' = v \ f v = f' v" - shows "upd f r = upd f' r'" + and r: "r = r'" and v: "acc r' = v'" + and f: "\v. v' = v \ f v = f' v" + shows "upd f r = upd f' r'" using uac r v [symmetric] apply (subgoal_tac "upd (\x. f (acc r')) r' = upd (\x. f' (acc r')) r'") apply (simp add: iso_tuple_update_accessor_cong_assist_def) @@ -128,8 +144,9 @@ done lemma update_accessor_congruence_unfoldE: - "iso_tuple_update_accessor_cong_assist upd acc \ r = r' \ acc r' = v' \ (\v. v = v' \ f v = f' v) - \ upd f r = upd f' r'" + "iso_tuple_update_accessor_cong_assist upd acc \ + r = r' \ acc r' = v' \ (\v. v = v' \ f v = f' v) \ + upd f r = upd f' r'" apply (erule(2) update_accessor_congruence_foldE) apply simp done @@ -140,15 +157,16 @@ lemma update_accessor_noopE: assumes uac: "iso_tuple_update_accessor_cong_assist upd acc" - and acc: "f (acc x) = acc x" - shows "upd f x = x" -using uac by (simp add: acc iso_tuple_update_accessor_cong_assist_id [OF uac, unfolded id_def] - cong: update_accessor_congruence_unfoldE [OF uac]) + and acc: "f (acc x) = acc x" + shows "upd f x = x" + using uac + by (simp add: acc iso_tuple_update_accessor_cong_assist_id [OF uac, unfolded id_def] + cong: update_accessor_congruence_unfoldE [OF uac]) lemma update_accessor_noop_compE: assumes uac: "iso_tuple_update_accessor_cong_assist upd acc" - assumes acc: "f (acc x) = acc x" - shows "upd (g \ f) x = upd g x" + and acc: "f (acc x) = acc x" + shows "upd (g \ f) x = upd g x" by (simp add: acc cong: update_accessor_congruence_unfoldE[OF uac]) lemma update_accessor_cong_assist_idI: @@ -156,7 +174,8 @@ by (simp add: iso_tuple_update_accessor_cong_assist_def) lemma update_accessor_cong_assist_triv: - "iso_tuple_update_accessor_cong_assist upd acc \ iso_tuple_update_accessor_cong_assist upd acc" + "iso_tuple_update_accessor_cong_assist upd acc \ + iso_tuple_update_accessor_cong_assist upd acc" by assumption lemma update_accessor_accessor_eqE: @@ -172,11 +191,13 @@ by (simp add: iso_tuple_update_accessor_eq_assist_def update_accessor_cong_assist_idI) lemma iso_tuple_update_accessor_eq_assist_triv: - "iso_tuple_update_accessor_eq_assist upd acc v f v' x \ iso_tuple_update_accessor_eq_assist upd acc v f v' x" + "iso_tuple_update_accessor_eq_assist upd acc v f v' x \ + iso_tuple_update_accessor_eq_assist upd acc v f v' x" by assumption lemma iso_tuple_update_accessor_cong_from_eq: - "iso_tuple_update_accessor_eq_assist upd acc v f v' x \ iso_tuple_update_accessor_cong_assist upd acc" + "iso_tuple_update_accessor_eq_assist upd acc v f v' x \ + iso_tuple_update_accessor_cong_assist upd acc" by (simp add: iso_tuple_update_accessor_eq_assist_def) lemma iso_tuple_surjective_proof_assistI: @@ -190,124 +211,139 @@ locale isomorphic_tuple = fixes isom :: "('a, 'b, 'c) tuple_isomorphism" assumes repr_inv: "\x. abst isom (repr isom x) = x" - assumes abst_inv: "\y. repr isom (abst isom y) = y" + and abst_inv: "\y. repr isom (abst isom y) = y" begin -lemma repr_inj: - "repr isom x = repr isom y \ x = y" - by (auto dest: arg_cong [of "repr isom x" "repr isom y" "abst isom"] simp add: repr_inv) +lemma repr_inj: "repr isom x = repr isom y \ x = y" + by (auto dest: arg_cong [of "repr isom x" "repr isom y" "abst isom"] + simp add: repr_inv) -lemma abst_inj: - "abst isom x = abst isom y \ x = y" - by (auto dest: arg_cong [of "abst isom x" "abst isom y" "repr isom"] simp add: abst_inv) +lemma abst_inj: "abst isom x = abst isom y \ x = y" + by (auto dest: arg_cong [of "abst isom x" "abst isom y" "repr isom"] + simp add: abst_inv) lemmas simps = Let_def repr_inv abst_inv repr_inj abst_inj lemma iso_tuple_access_update_fst_fst: "f o h g = j o f \ - (f o iso_tuple_fst isom) o (iso_tuple_fst_update isom o h) g - = j o (f o iso_tuple_fst isom)" + (f o iso_tuple_fst isom) o (iso_tuple_fst_update isom o h) g = + j o (f o iso_tuple_fst isom)" by (clarsimp simp: iso_tuple_fst_update_def iso_tuple_fst_def simps - intro!: ext elim!: o_eq_elim) + intro!: ext elim!: o_eq_elim) lemma iso_tuple_access_update_snd_snd: "f o h g = j o f \ - (f o iso_tuple_snd isom) o (iso_tuple_snd_update isom o h) g - = j o (f o iso_tuple_snd isom)" + (f o iso_tuple_snd isom) o (iso_tuple_snd_update isom o h) g = + j o (f o iso_tuple_snd isom)" by (clarsimp simp: iso_tuple_snd_update_def iso_tuple_snd_def simps - intro!: ext elim!: o_eq_elim) + intro!: ext elim!: o_eq_elim) lemma iso_tuple_access_update_fst_snd: - "(f o iso_tuple_fst isom) o (iso_tuple_snd_update isom o h) g - = id o (f o iso_tuple_fst isom)" + "(f o iso_tuple_fst isom) o (iso_tuple_snd_update isom o h) g = + id o (f o iso_tuple_fst isom)" by (clarsimp simp: iso_tuple_snd_update_def iso_tuple_fst_def simps - intro!: ext elim!: o_eq_elim) + intro!: ext elim!: o_eq_elim) lemma iso_tuple_access_update_snd_fst: - "(f o iso_tuple_snd isom) o (iso_tuple_fst_update isom o h) g - = id o (f o iso_tuple_snd isom)" + "(f o iso_tuple_snd isom) o (iso_tuple_fst_update isom o h) g = + id o (f o iso_tuple_snd isom)" by (clarsimp simp: iso_tuple_fst_update_def iso_tuple_snd_def simps - intro!: ext elim!: o_eq_elim) + intro!: ext elim!: o_eq_elim) lemma iso_tuple_update_swap_fst_fst: "h f o j g = j g o h f \ - (iso_tuple_fst_update isom o h) f o (iso_tuple_fst_update isom o j) g - = (iso_tuple_fst_update isom o j) g o (iso_tuple_fst_update isom o h) f" + (iso_tuple_fst_update isom o h) f o (iso_tuple_fst_update isom o j) g = + (iso_tuple_fst_update isom o j) g o (iso_tuple_fst_update isom o h) f" by (clarsimp simp: iso_tuple_fst_update_def simps apfst_compose intro!: ext) lemma iso_tuple_update_swap_snd_snd: "h f o j g = j g o h f \ - (iso_tuple_snd_update isom o h) f o (iso_tuple_snd_update isom o j) g - = (iso_tuple_snd_update isom o j) g o (iso_tuple_snd_update isom o h) f" + (iso_tuple_snd_update isom o h) f o (iso_tuple_snd_update isom o j) g = + (iso_tuple_snd_update isom o j) g o (iso_tuple_snd_update isom o h) f" by (clarsimp simp: iso_tuple_snd_update_def simps apsnd_compose intro!: ext) lemma iso_tuple_update_swap_fst_snd: - "(iso_tuple_snd_update isom o h) f o (iso_tuple_fst_update isom o j) g - = (iso_tuple_fst_update isom o j) g o (iso_tuple_snd_update isom o h) f" - by (clarsimp simp: iso_tuple_fst_update_def iso_tuple_snd_update_def simps intro!: ext) + "(iso_tuple_snd_update isom o h) f o (iso_tuple_fst_update isom o j) g = + (iso_tuple_fst_update isom o j) g o (iso_tuple_snd_update isom o h) f" + by (clarsimp simp: iso_tuple_fst_update_def iso_tuple_snd_update_def + simps intro!: ext) lemma iso_tuple_update_swap_snd_fst: - "(iso_tuple_fst_update isom o h) f o (iso_tuple_snd_update isom o j) g - = (iso_tuple_snd_update isom o j) g o (iso_tuple_fst_update isom o h) f" + "(iso_tuple_fst_update isom o h) f o (iso_tuple_snd_update isom o j) g = + (iso_tuple_snd_update isom o j) g o (iso_tuple_fst_update isom o h) f" by (clarsimp simp: iso_tuple_fst_update_def iso_tuple_snd_update_def simps intro!: ext) lemma iso_tuple_update_compose_fst_fst: "h f o j g = k (f o g) \ - (iso_tuple_fst_update isom o h) f o (iso_tuple_fst_update isom o j) g - = (iso_tuple_fst_update isom o k) (f o g)" + (iso_tuple_fst_update isom o h) f o (iso_tuple_fst_update isom o j) g = + (iso_tuple_fst_update isom o k) (f o g)" by (clarsimp simp: iso_tuple_fst_update_def simps apfst_compose intro!: ext) lemma iso_tuple_update_compose_snd_snd: "h f o j g = k (f o g) \ - (iso_tuple_snd_update isom o h) f o (iso_tuple_snd_update isom o j) g - = (iso_tuple_snd_update isom o k) (f o g)" + (iso_tuple_snd_update isom o h) f o (iso_tuple_snd_update isom o j) g = + (iso_tuple_snd_update isom o k) (f o g)" by (clarsimp simp: iso_tuple_snd_update_def simps apsnd_compose intro!: ext) lemma iso_tuple_surjective_proof_assist_step: "iso_tuple_surjective_proof_assist v a (iso_tuple_fst isom o f) \ - iso_tuple_surjective_proof_assist v b (iso_tuple_snd isom o f) - \ iso_tuple_surjective_proof_assist v (iso_tuple_cons isom a b) f" + iso_tuple_surjective_proof_assist v b (iso_tuple_snd isom o f) \ + iso_tuple_surjective_proof_assist v (iso_tuple_cons isom a b) f" by (clarsimp simp: iso_tuple_surjective_proof_assist_def simps iso_tuple_fst_def iso_tuple_snd_def iso_tuple_cons_def) lemma iso_tuple_fst_update_accessor_cong_assist: assumes "iso_tuple_update_accessor_cong_assist f g" - shows "iso_tuple_update_accessor_cong_assist (iso_tuple_fst_update isom o f) (g o iso_tuple_fst isom)" + shows "iso_tuple_update_accessor_cong_assist + (iso_tuple_fst_update isom o f) (g o iso_tuple_fst isom)" proof - - from assms have "f id = id" by (rule iso_tuple_update_accessor_cong_assist_id) - with assms show ?thesis by (clarsimp simp: iso_tuple_update_accessor_cong_assist_def simps - iso_tuple_fst_update_def iso_tuple_fst_def) + from assms have "f id = id" + by (rule iso_tuple_update_accessor_cong_assist_id) + with assms show ?thesis + by (clarsimp simp: iso_tuple_update_accessor_cong_assist_def simps + iso_tuple_fst_update_def iso_tuple_fst_def) qed lemma iso_tuple_snd_update_accessor_cong_assist: assumes "iso_tuple_update_accessor_cong_assist f g" - shows "iso_tuple_update_accessor_cong_assist (iso_tuple_snd_update isom o f) (g o iso_tuple_snd isom)" + shows "iso_tuple_update_accessor_cong_assist + (iso_tuple_snd_update isom o f) (g o iso_tuple_snd isom)" proof - - from assms have "f id = id" by (rule iso_tuple_update_accessor_cong_assist_id) - with assms show ?thesis by (clarsimp simp: iso_tuple_update_accessor_cong_assist_def simps - iso_tuple_snd_update_def iso_tuple_snd_def) + from assms have "f id = id" + by (rule iso_tuple_update_accessor_cong_assist_id) + with assms show ?thesis + by (clarsimp simp: iso_tuple_update_accessor_cong_assist_def simps + iso_tuple_snd_update_def iso_tuple_snd_def) qed lemma iso_tuple_fst_update_accessor_eq_assist: assumes "iso_tuple_update_accessor_eq_assist f g a u a' v" - shows "iso_tuple_update_accessor_eq_assist (iso_tuple_fst_update isom o f) (g o iso_tuple_fst isom) + shows "iso_tuple_update_accessor_eq_assist + (iso_tuple_fst_update isom o f) (g o iso_tuple_fst isom) (iso_tuple_cons isom a b) u (iso_tuple_cons isom a' b) v" proof - from assms have "f id = id" - by (auto simp add: iso_tuple_update_accessor_eq_assist_def intro: iso_tuple_update_accessor_cong_assist_id) - with assms show ?thesis by (clarsimp simp: iso_tuple_update_accessor_eq_assist_def - iso_tuple_fst_update_def iso_tuple_fst_def iso_tuple_update_accessor_cong_assist_def iso_tuple_cons_def simps) + by (auto simp add: iso_tuple_update_accessor_eq_assist_def + intro: iso_tuple_update_accessor_cong_assist_id) + with assms show ?thesis + by (clarsimp simp: iso_tuple_update_accessor_eq_assist_def + iso_tuple_fst_update_def iso_tuple_fst_def + iso_tuple_update_accessor_cong_assist_def iso_tuple_cons_def simps) qed lemma iso_tuple_snd_update_accessor_eq_assist: assumes "iso_tuple_update_accessor_eq_assist f g b u b' v" - shows "iso_tuple_update_accessor_eq_assist (iso_tuple_snd_update isom o f) (g o iso_tuple_snd isom) + shows "iso_tuple_update_accessor_eq_assist + (iso_tuple_snd_update isom o f) (g o iso_tuple_snd isom) (iso_tuple_cons isom a b) u (iso_tuple_cons isom a b') v" proof - from assms have "f id = id" - by (auto simp add: iso_tuple_update_accessor_eq_assist_def intro: iso_tuple_update_accessor_cong_assist_id) - with assms show ?thesis by (clarsimp simp: iso_tuple_update_accessor_eq_assist_def - iso_tuple_snd_update_def iso_tuple_snd_def iso_tuple_update_accessor_cong_assist_def iso_tuple_cons_def simps) + by (auto simp add: iso_tuple_update_accessor_eq_assist_def + intro: iso_tuple_update_accessor_cong_assist_id) + with assms show ?thesis + by (clarsimp simp: iso_tuple_update_accessor_eq_assist_def + iso_tuple_snd_update_def iso_tuple_snd_def + iso_tuple_update_accessor_cong_assist_def iso_tuple_cons_def simps) qed lemma iso_tuple_cons_conj_eqI: @@ -316,37 +352,39 @@ by (clarsimp simp: iso_tuple_cons_def simps) lemmas intros = - iso_tuple_access_update_fst_fst - iso_tuple_access_update_snd_snd - iso_tuple_access_update_fst_snd - iso_tuple_access_update_snd_fst - iso_tuple_update_swap_fst_fst - iso_tuple_update_swap_snd_snd - iso_tuple_update_swap_fst_snd - iso_tuple_update_swap_snd_fst - iso_tuple_update_compose_fst_fst - iso_tuple_update_compose_snd_snd - iso_tuple_surjective_proof_assist_step - iso_tuple_fst_update_accessor_eq_assist - iso_tuple_snd_update_accessor_eq_assist - iso_tuple_fst_update_accessor_cong_assist - iso_tuple_snd_update_accessor_cong_assist - iso_tuple_cons_conj_eqI + iso_tuple_access_update_fst_fst + iso_tuple_access_update_snd_snd + iso_tuple_access_update_fst_snd + iso_tuple_access_update_snd_fst + iso_tuple_update_swap_fst_fst + iso_tuple_update_swap_snd_snd + iso_tuple_update_swap_fst_snd + iso_tuple_update_swap_snd_fst + iso_tuple_update_compose_fst_fst + iso_tuple_update_compose_snd_snd + iso_tuple_surjective_proof_assist_step + iso_tuple_fst_update_accessor_eq_assist + iso_tuple_snd_update_accessor_eq_assist + iso_tuple_fst_update_accessor_cong_assist + iso_tuple_snd_update_accessor_cong_assist + iso_tuple_cons_conj_eqI end lemma isomorphic_tuple_intro: fixes repr abst assumes repr_inj: "\x y. repr x = repr y \ x = y" - and abst_inv: "\z. repr (abst z) = z" - assumes v: "v \ Tuple_Isomorphism repr abst" + and abst_inv: "\z. repr (abst z) = z" + and v: "v \ Tuple_Isomorphism repr abst" shows "isomorphic_tuple v" proof - have "\x. repr (abst (repr x)) = repr x" + fix x have "repr (abst (repr x)) = repr x" by (simp add: abst_inv) - then show "\x. Record.abst v (Record.repr v x) = x" + then show "Record.abst v (Record.repr v x) = x" by (simp add: v repr_inj) - show P: "\y. Record.repr v (Record.abst v y) = y" +next + fix y + show "Record.repr v (Record.abst v y) = y" by (simp add: v) (fact abst_inv) qed @@ -357,8 +395,7 @@ "isomorphic_tuple tuple_iso_tuple" by (simp add: isomorphic_tuple_intro [OF _ _ reflexive] tuple_iso_tuple_def) -lemma refl_conj_eq: - "Q = R \ P \ Q \ P \ R" +lemma refl_conj_eq: "Q = R \ P \ Q \ P \ R" by simp lemma iso_tuple_UNIV_I: "x \ UNIV \ True" @@ -370,15 +407,13 @@ lemma prop_subst: "s = t \ PROP P t \ PROP P s" by simp -lemma K_record_comp: "(\x. c) \ f = (\x. c)" +lemma K_record_comp: "(\x. c) \ f = (\x. c)" by (simp add: comp_def) -lemma o_eq_dest_lhs: - "a o b = c \ a (b v) = c v" +lemma o_eq_dest_lhs: "a o b = c \ a (b v) = c v" by clarsimp -lemma o_eq_id_dest: - "a o b = id o c \ a (b v) = c v" +lemma o_eq_id_dest: "a o b = id o c \ a (b v) = c v" by clarsimp @@ -403,17 +438,17 @@ "_record_scheme" :: "[fields, 'a] => 'a" ("(3'(| _,/ (2... =/ _) |'))") "_update_name" :: idt - "_update" :: "[ident, 'a] => update" ("(2_ :=/ _)") + "_update" :: "ident => 'a => update" ("(2_ :=/ _)") "" :: "update => updates" ("_") - "_updates" :: "[update, updates] => updates" ("_,/ _") - "_record_update" :: "['a, updates] => 'b" ("_/(3'(| _ |'))" [900,0] 900) + "_updates" :: "update => updates => updates" ("_,/ _") + "_record_update" :: "'a => updates => 'b" ("_/(3'(| _ |'))" [900, 0] 900) syntax (xsymbols) "_record_type" :: "field_types => type" ("(3\_\)") - "_record_type_scheme" :: "[field_types, type] => type" ("(3\_,/ (2\ ::/ _)\)") - "_record" :: "fields => 'a" ("(3\_\)") - "_record_scheme" :: "[fields, 'a] => 'a" ("(3\_,/ (2\ =/ _)\)") - "_record_update" :: "['a, updates] => 'b" ("_/(3\_\)" [900,0] 900) + "_record_type_scheme" :: "field_types => type => type" ("(3\_,/ (2\ ::/ _)\)") + "_record" :: "fields => 'a" ("(3\_\)") + "_record_scheme" :: "fields => 'a => 'a" ("(3\_,/ (2\ =/ _)\)") + "_record_update" :: "'a => updates => 'b" ("_/(3\_\)" [900, 0] 900) subsection {* Record package *}