# HG changeset patch # User paulson # Date 1565966888 -3600 # Node ID d18195a7c32f4a8f77ce263a048c0a119125b992 # Parent 87dffe9700bdfc984ed7f8b1980260501a958396 Fixed brace matching (plus some whitespace cleanup) diff -r 87dffe9700bd -r d18195a7c32f src/HOL/Analysis/Improper_Integral.thy --- a/src/HOL/Analysis/Improper_Integral.thy Fri Aug 16 12:53:47 2019 +0100 +++ b/src/HOL/Analysis/Improper_Integral.thy Fri Aug 16 15:48:08 2019 +0100 @@ -10,7 +10,7 @@ subsection \Equiintegrability\ -text\The definition here only really makes sense for an elementary set. +text\The definition here only really makes sense for an elementary set. We just use compact intervals in applications below.\ definition\<^marker>\tag important\ equiintegrable_on (infixr "equiintegrable'_on" 46) @@ -27,7 +27,7 @@ lemma equiintegrable_on_sing [simp]: "{f} equiintegrable_on cbox a b \ f integrable_on cbox a b" by (simp add: equiintegrable_on_def has_integral_integral has_integral integrable_on_def) - + lemma equiintegrable_on_subset: "\F equiintegrable_on I; G \ F\ \ G equiintegrable_on I" unfolding equiintegrable_on_def Ball_def by (erule conj_forward imp_forward all_forward ex_forward | blast)+ @@ -401,7 +401,7 @@ using assms apply (auto simp: equiintegrable_on_def) apply (rule integrable_eq) - by auto + by auto qed subsection\Subinterval restrictions for equiintegrable families\ @@ -1432,9 +1432,9 @@ have *: "norm (h x) \ norm (f x)" if "h \ insert f (\c d. {?g B c d})" "x \ cbox a b" for h x using that by auto - have "(\i\Basis. - \\. \h\insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). {\x. if x \ i \ \ then h x else 0}). - {\x. if \ \ x \ i then h x else 0}) + have "(\i\Basis. + \\. \h\insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). {\x. if x \ i \ \ then h x else 0}). + {\x. if \ \ x \ i then h x else 0}) equiintegrable_on cbox a b" proof (rule equiintegrable_halfspace_restrictions_ge [where f=f]) show "insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). @@ -1443,13 +1443,13 @@ using insert.prems apply auto done show"norm(h x) \ norm(f x)" - if "h \ insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). {\x. if x \ i \ \ then h x else 0})" + if "h \ insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). {\x. if x \ i \ \ then h x else 0})" "x \ cbox a b" for h x using that by auto qed auto - then have "insert f (\i\Basis. - \\. \h\insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). {\x. if x \ i \ \ then h x else 0}). - {\x. if \ \ x \ i then h x else 0}) + then have "insert f (\i\Basis. + \\. \h\insert f (\i\Basis. \\. \h\insert f (\c d. {?g B c d}). {\x. if x \ i \ \ then h x else 0}). + {\x. if \ \ x \ i then h x else 0}) equiintegrable_on cbox a b" by (blast intro: f equiintegrable_on_insert) then show ?case @@ -1469,7 +1469,7 @@ show ?thesis by (rule equiintegrable_on_subset [OF * [OF subset_refl]]) (auto simp: mem_box) qed - + subsection\Continuity of the indefinite integral\ @@ -1935,7 +1935,7 @@ proof (cases "g ?\ \ y") case True then obtain \ where \: "\x. g x \ y \ x \ \" - by (metis g lower order.trans) \ \in fact y is @{term ?\}}\ + by (metis g lower order.trans) \ \in fact y is @{term ?\}\ then show ?thesis by (force simp: \) next @@ -2010,7 +2010,7 @@ proof (cases "g ?\ \ y") case True then obtain \ where \: "\x. g x \ y \ x \ \" - by (metis g lower order.trans) \ \in fact y is @{term ?\}}\ + by (metis g lower order.trans) \ \in fact y is @{term ?\}\ then show ?thesis by (force simp: \) next @@ -2205,7 +2205,7 @@ and "((\x. g x * f x) has_integral (g a * integral {a..c} f + g b * integral {c..b} f)) {a..b}" proof - have gab: "g a \ g b" - using \a \ b\ g by blast + using \a \ b\ g by blast then consider "g a < g b" | "g a = g b" by linarith then show thesis @@ -2270,4 +2270,4 @@ end - +