# HG changeset patch # User wenzelm # Date 976284636 -3600 # Node ID d1efa59ea259a7111eb39f7f54c102c4d2dbf2c1 # Parent b115460e5c505528d35814ffe860fa33726ab7f4 tuned; diff -r b115460e5c50 -r d1efa59ea259 src/HOL/Isar_examples/BasicLogic.thy --- a/src/HOL/Isar_examples/BasicLogic.thy Fri Dec 08 00:04:34 2000 +0100 +++ b/src/HOL/Isar_examples/BasicLogic.thy Fri Dec 08 15:10:36 2000 +0100 @@ -368,10 +368,10 @@ binds term abbreviations by higher-order pattern matching. *} -lemma "(EX x. P (f x)) --> (EX x. P x)" +lemma "(EX x. P (f x)) --> (EX y. P y)" proof assume "EX x. P (f x)" - thus "EX x. P x" + thus "EX y. P y" proof (rule exE) -- {* rule \name{exE}: \smash{$\infer{B}{\ex x A(x) & \infer*{B}{[A(x)]_x}}$} *} @@ -390,10 +390,10 @@ the text as follows. *} -lemma "(EX x. P (f x)) --> (EX x. P x)" +lemma "(EX x. P (f x)) --> (EX y. P y)" proof assume "EX x. P (f x)" - thus "EX x. P x" + thus "EX y. P y" proof fix a assume "P (f a)" @@ -408,11 +408,11 @@ generalized existence reasoning. *} -lemma "(EX x. P (f x)) --> (EX x. P x)" +lemma "(EX x. P (f x)) --> (EX y. P y)" proof assume "EX x. P (f x)" - then obtain a where "P (f a)" by blast - thus "EX x. P x" .. + then obtain a where "P (f a)" .. + thus "EX y. P y" .. qed text {*