# HG changeset patch # User paulson # Date 1020845675 -7200 # Node ID d1fea11b2fb680cd3682db3a52442df90035be1e # Parent 6f7526467e5ad15d4e884a329349be21c3333daa tidied diff -r 6f7526467e5a -r d1fea11b2fb6 src/ZF/Order.ML --- a/src/ZF/Order.ML Wed May 08 10:14:07 2002 +0200 +++ b/src/ZF/Order.ML Wed May 08 10:14:35 2002 +0200 @@ -233,8 +233,7 @@ (*Needed? But ord_iso_converse is!*) Goalw [ord_iso_def] - "[| f: ord_iso(A,r,B,s); : r; x:A; y:A |] ==> \ -\ : s"; + "[| f: ord_iso(A,r,B,s); : r; x:A; y:A |] ==> : s"; by (Blast_tac 1); qed "ord_iso_apply"; @@ -246,8 +245,8 @@ addsimps [right_inverse_bij]; Goalw [ord_iso_def] - "[| f: ord_iso(A,r,B,s); : s; x:B; y:B |] ==> \ -\ : r"; + "[| f: ord_iso(A,r,B,s); : s; x:B; y:B |] \ +\ ==> : r"; by (etac CollectE 1); by (etac (bspec RS bspec RS iffD2) 1); by (REPEAT (eresolve_tac [asm_rl, @@ -287,7 +286,7 @@ Goalw [ord_iso_def, mono_map_def] "[| f: mono_map(A,r,B,s); g: mono_map(B,s,A,r); \ -\ f O g = id(B); g O f = id(A) |] ==> f: ord_iso(A,r,B,s)"; +\ f O g = id(B); g O f = id(A) |] ==> f: ord_iso(A,r,B,s)"; by Safe_tac; by (REPEAT_FIRST (ares_tac [fg_imp_bijective])); by (Blast_tac 1); @@ -296,9 +295,9 @@ by (asm_full_simp_tac (simpset() addsimps [comp_eq_id_iff RS iffD1]) 1); qed "mono_ord_isoI"; -Goal "[| well_ord(A,r); well_ord(B,s); \ -\ f: mono_map(A,r,B,s); converse(f): mono_map(B,s,A,r) \ -\ |] ==> f: ord_iso(A,r,B,s)"; +Goal "[| well_ord(A,r); well_ord(B,s); \ +\ f: mono_map(A,r,B,s); converse(f): mono_map(B,s,A,r) |] \ +\ ==> f: ord_iso(A,r,B,s)"; by (REPEAT (ares_tac [mono_ord_isoI] 1)); by (forward_tac [mono_map_is_fun RS fun_is_rel] 1); by (etac (converse_converse RS subst) 1 THEN rtac left_comp_inverse 1); @@ -385,8 +384,7 @@ (*Does not assume r is a wellordering!*) Goalw [ord_iso_def, pred_def] - "[| f : ord_iso(A,r,B,s); a:A |] ==> \ -\ f `` pred(A,a,r) = pred(B, f`a, s)"; + "[|f : ord_iso(A,r,B,s); a:A|] ==> f `` pred(A,a,r) = pred(B, f`a, s)"; by (etac CollectE 1); by (asm_simp_tac (simpset() addsimps [[bij_is_fun, Collect_subset] MRS image_fun]) 1); @@ -434,8 +432,8 @@ (*See Halmos, page 72*) Goal "[| well_ord(A,r); \ -\ f: ord_iso(A,r, B,s); g: ord_iso(A,r, B,s); y: A |] \ -\ ==> ~ : s"; +\ f: ord_iso(A,r, B,s); g: ord_iso(A,r, B,s); y: A |] \ +\ ==> ~ : s"; by (ftac well_ord_iso_subset_lemma 1); by (res_inst_tac [("f","converse(f)"), ("g","g")] ord_iso_trans 1); by (REPEAT_FIRST (ares_tac [subset_refl, ord_iso_sym])); @@ -447,7 +445,7 @@ (*Kunen's Lemma 6.2: Order-isomorphisms between well-orderings are unique*) Goal "[| well_ord(A,r); \ -\ f: ord_iso(A,r, B,s); g: ord_iso(A,r, B,s) |] ==> f = g"; +\ f: ord_iso(A,r, B,s); g: ord_iso(A,r, B,s) |] ==> f = g"; by (rtac fun_extension 1); by (REPEAT (etac (ord_iso_is_bij RS bij_is_fun) 1)); by (subgoals_tac ["f`x : B", "g`x : B", "linear(B,s)"] 1); @@ -594,28 +592,23 @@ (*** Properties of converse(r), by Krzysztof Grabczewski ***) -Goalw [irrefl_def] - "irrefl(A,r) ==> irrefl(A,converse(r))"; +Goalw [irrefl_def] "irrefl(A,r) ==> irrefl(A,converse(r))"; by (Blast_tac 1); qed "irrefl_converse"; -Goalw [trans_on_def] - "trans[A](r) ==> trans[A](converse(r))"; +Goalw [trans_on_def] "trans[A](r) ==> trans[A](converse(r))"; by (Blast_tac 1); qed "trans_on_converse"; -Goalw [part_ord_def] - "part_ord(A,r) ==> part_ord(A,converse(r))"; +Goalw [part_ord_def] "part_ord(A,r) ==> part_ord(A,converse(r))"; by (blast_tac (claset() addSIs [irrefl_converse, trans_on_converse]) 1); qed "part_ord_converse"; -Goalw [linear_def] - "linear(A,r) ==> linear(A,converse(r))"; +Goalw [linear_def] "linear(A,r) ==> linear(A,converse(r))"; by (Blast_tac 1); qed "linear_converse"; -Goalw [tot_ord_def] - "tot_ord(A,r) ==> tot_ord(A,converse(r))"; +Goalw [tot_ord_def] "tot_ord(A,r) ==> tot_ord(A,converse(r))"; by (blast_tac (claset() addSIs [part_ord_converse, linear_converse]) 1); qed "tot_ord_converse";