# HG changeset patch # User wenzelm # Date 1321817173 -3600 # Node ID d2d9ef16ccaf723354caa8789dbb2924aa180466 # Parent 2a858377c3d2e2c395136613505087697a115d97 explicit is better than implicit; diff -r 2a858377c3d2 -r d2d9ef16ccaf src/HOL/Fun.thy --- a/src/HOL/Fun.thy Sun Nov 20 20:15:02 2011 +0100 +++ b/src/HOL/Fun.thy Sun Nov 20 20:26:13 2011 +0100 @@ -578,12 +578,11 @@ apply (rule_tac [2] ext, auto) done -(* f x = y ==> f(x:=y) = f *) -lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] +lemma fun_upd_idem: "f x = y ==> f(x:=y) = f" + by (simp only: fun_upd_idem_iff) -(* f(x := f x) = f *) -lemmas fun_upd_triv = refl [THEN fun_upd_idem] -declare fun_upd_triv [iff] +lemma fun_upd_triv [iff]: "f(x := f x) = f" + by (simp only: fun_upd_idem) lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" by (simp add: fun_upd_def)