# HG changeset patch # User nipkow # Date 1362738500 -3600 # Node ID 65f4284d3f1a57d1a14cc29214025c4166c5592b # Parent 197ad6b8f7630b80662245a1b2cc0158270707d5# Parent d315e9a9ee72ab549a46dae48be51b056983346c merged diff -r d315e9a9ee72 -r 65f4284d3f1a src/HOL/BNF/More_BNFs.thy --- a/src/HOL/BNF/More_BNFs.thy Fri Mar 08 11:28:04 2013 +0100 +++ b/src/HOL/BNF/More_BNFs.thy Fri Mar 08 11:28:20 2013 +0100 @@ -470,6 +470,8 @@ unfolding fset_rel_def fset_rel_aux by simp qed auto +lemmas [simp] = fset.map_comp' fset.map_id' fset.set_natural' + lemma fset_rel_fset: "set_rel \ (fset A1) (fset A2) = fset_rel \ A1 A2" unfolding fset_rel_def set_rel_def by auto diff -r d315e9a9ee72 -r 65f4284d3f1a src/HOL/Quotient_Examples/FSet.thy --- a/src/HOL/Quotient_Examples/FSet.thy Fri Mar 08 11:28:04 2013 +0100 +++ b/src/HOL/Quotient_Examples/FSet.thy Fri Mar 08 11:28:20 2013 +0100 @@ -722,6 +722,9 @@ shows "map_fset f (S |\| T) = map_fset f S |\| map_fset f T" by (descending) (simp) +lemma in_fset_map_fset[simp]: "a |\| map_fset f X = (\b. b |\| X \ a = f b)" + by descending auto + subsection {* card_fset *}