# HG changeset patch # User paulson # Date 828606278 -7200 # Node ID d3484e841d1e244cafc81611335e6604d6887d76 # Parent 69c0946398237a3bd73abdcee59566139bb415b8 New example Comb: Church-Rosser for combinators, ported from ZF diff -r 69c094639823 -r d3484e841d1e src/HOL/Makefile --- a/src/HOL/Makefile Wed Apr 03 20:08:27 1996 +0200 +++ b/src/HOL/Makefile Thu Apr 04 10:24:38 1996 +0200 @@ -182,7 +182,7 @@ ##Miscellaneous examples EX_NAMES = LexProd MT Acc PropLog Puzzle Mutil Qsort LList Rec Simult Term \ - String BT Perm + String BT Perm Comb EX_FILES = ex/ROOT.ML ex/cla.ML ex/meson.ML ex/mesontest.ML ex/rel.ML \ ex/set.ML $(EX_NAMES:%=ex/%.thy) $(EX_NAMES:%=ex/%.ML) diff -r 69c094639823 -r d3484e841d1e src/HOL/ex/Comb.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/ex/Comb.ML Thu Apr 04 10:24:38 1996 +0200 @@ -0,0 +1,188 @@ +(* Title: HOL/ex/comb.ML + ID: $Id$ + Author: Lawrence C Paulson + Copyright 1996 University of Cambridge + +Combinatory Logic example: the Church-Rosser Theorem +Curiously, combinators do not include free variables. + +Example taken from + J. Camilleri and T. F. Melham. + Reasoning with Inductively Defined Relations in the HOL Theorem Prover. + Report 265, University of Cambridge Computer Laboratory, 1992. + +HOL system proofs may be found in +/usr/groups/theory/hvg-aftp/contrib/rule-induction/cl.ml +*) + +open Comb; + + +(*** Reflexive/Transitive closure preserves the Church-Rosser property + So does the Transitive closure; use r_into_trancl instead of rtrancl_refl +***) + +val [_, spec_mp] = [spec] RL [mp]; + +(*Strip lemma. The induction hyp is all but the last diamond of the strip.*) +goalw Comb.thy [diamond_def] + "!!x y r. [| diamond(r); (x,y):r^* |] ==> \ +\ ALL y'. (x,y'):r --> (EX z. (y',z): r^* & (y,z): r)"; +by (etac rtrancl_induct 1); +by (fast_tac (HOL_cs addIs [rtrancl_refl]) 1); +by (slow_best_tac (set_cs addIs [r_into_rtrancl RSN (2, rtrancl_trans)] + addSDs [spec_mp]) 1); +val diamond_strip_lemmaE = result() RS spec RS mp RS exE; + +val [major] = goal Comb.thy "diamond(r) ==> diamond(r^*)"; +by (rewtac diamond_def); (*unfold only in goal, not in premise!*) +by (rtac (impI RS allI RS allI) 1); +by (etac rtrancl_induct 1); +by (fast_tac (set_cs addIs [rtrancl_refl]) 1); +by (ALLGOALS + (slow_best_tac (set_cs addIs [r_into_rtrancl, rtrancl_trans] + addEs [major RS diamond_strip_lemmaE]))); +qed "diamond_rtrancl"; + + +(*** Results about Contraction ***) + +bind_thm ("contract_induct", + (contract.mutual_induct RS spec RS spec RSN (2,rev_mp))); + +(** Non-contraction results **) + +(*Derive a case for each combinator constructor*) +val K_contractE = contract.mk_cases comb.simps "K -1-> z"; +val S_contractE = contract.mk_cases comb.simps "S -1-> z"; +val Ap_contractE = contract.mk_cases comb.simps "x#y -1-> z"; + +val contract_cs = + HOL_cs addIs contract.intrs + addSEs [K_contractE, S_contractE, Ap_contractE] + addss (HOL_ss addsimps comb.simps); + +goalw Comb.thy [I_def] "!!z. I -1-> z ==> P"; +by (fast_tac contract_cs 1); +qed "I_contract_E"; + +(*Unused*) +goal Comb.thy "!!x z. K#x -1-> z ==> (EX y. z = K#y & x -1-> y)"; +by (fast_tac contract_cs 1); +qed "K1_contractD"; + +goal Comb.thy "!!x z. x ---> y ==> x#z ---> y#z"; +by (etac rtrancl_induct 1); +by (rtac rtrancl_refl 1); +by (fast_tac (contract_cs addIs [r_into_rtrancl, rtrancl_trans]) 1); +qed "Ap_reduce1"; + +goal Comb.thy "!!x z. x ---> y ==> z#x ---> z#y"; +by (etac rtrancl_induct 1); +by (rtac rtrancl_refl 1); +by (fast_tac (contract_cs addIs [r_into_rtrancl, rtrancl_trans]) 1); +qed "Ap_reduce2"; + +(** Counterexample to the diamond property for -1-> **) + +goal Comb.thy "K#I#(I#I) -1-> I"; +by (rtac contract.K 1); +qed "KIII_contract1"; + +goalw Comb.thy [I_def] "K#I#(I#I) -1-> K#I#((K#I)#(K#I))"; +by (fast_tac contract_cs 1); +qed "KIII_contract2"; + +goal Comb.thy "K#I#((K#I)#(K#I)) -1-> I"; +by (fast_tac contract_cs 1); +qed "KIII_contract3"; + +goalw Comb.thy [diamond_def] "~ diamond(contract)"; +by (fast_tac (HOL_cs addIs [KIII_contract1,KIII_contract2,KIII_contract3] + addSEs [I_contract_E]) 1); +qed "not_diamond_contract"; + + + +(*** Results about Parallel Contraction ***) + +bind_thm ("parcontract_induct", + (parcontract.mutual_induct RS spec RS spec RSN (2,rev_mp))); + +(*Derive a case for each combinator constructor*) +val K_parcontractE = parcontract.mk_cases comb.simps "K =1=> z"; +val S_parcontractE = parcontract.mk_cases comb.simps "S =1=> z"; +val Ap_parcontractE = parcontract.mk_cases comb.simps "x#y =1=> z"; + +val parcontract_cs = + HOL_cs addIs parcontract.intrs + addSEs [K_parcontractE, S_parcontractE, + Ap_parcontractE] + addss (HOL_ss addsimps comb.simps); + +(*** Basic properties of parallel contraction ***) + +goal Comb.thy "!!x z. K#x =1=> z ==> (EX p'. z = K#p' & x =1=> p')"; +by (fast_tac parcontract_cs 1); +qed "K1_parcontractD"; + +goal Comb.thy "!!x z. S#x =1=> z ==> (EX p'. z = S#p' & x =1=> p')"; +by (fast_tac parcontract_cs 1); +qed "S1_parcontractD"; + +goal Comb.thy + "!!x y z. S#x#y =1=> z ==> (EX p' q'. z = S#p'#q' & x =1=> p' & y =1=> q')"; +by (fast_tac (parcontract_cs addSDs [S1_parcontractD]) 1); + (*the extra rule makes the proof more than twice as fast*) +qed "S2_parcontractD"; + +(*Church-Rosser property for parallel contraction*) +goalw Comb.thy [diamond_def] "diamond(parcontract)"; +by (rtac (impI RS allI RS allI) 1); +by (etac parcontract_induct 1); +by (ALLGOALS + (fast_tac (parcontract_cs addSDs [K1_parcontractD,S2_parcontractD]))); +qed "diamond_parcontract"; + + +(*** Equivalence of x--->y and x===>y ***) + +goal Comb.thy "contract <= parcontract"; +by (rtac subsetI 1); +by (etac contract.induct 1); +by (ALLGOALS (fast_tac (parcontract_cs))); +qed "contract_subset_parcontract"; + +(*Reductions: simply throw together reflexivity, transitivity and + the one-step reductions*) +val reduce_cs = contract_cs + addIs [rtrancl_refl, r_into_rtrancl, + contract.K, contract.S, Ap_reduce1, Ap_reduce2, + rtrancl_trans]; + +(*Example only: not used*) +goalw Comb.thy [I_def] "I#x ---> x"; +by (best_tac reduce_cs 1); +qed "reduce_I"; + +goal Comb.thy "parcontract <= contract^*"; +by (rtac subsetI 1); +by (etac parcontract.induct 1); +by (ALLGOALS (deepen_tac reduce_cs 0)); +qed "parcontract_subset_reduce"; + +goal Comb.thy "contract^* = parcontract^*"; +by (REPEAT + (resolve_tac [equalityI, + contract_subset_parcontract RS rtrancl_mono, + parcontract_subset_reduce RS rtrancl_subset_rtrancl] 1)); +qed "reduce_eq_parreduce"; + +goal Comb.thy "diamond(contract^*)"; +by (simp_tac (HOL_ss addsimps [reduce_eq_parreduce, diamond_rtrancl, + diamond_parcontract]) 1); + +qed "diamond_reduce"; + + +writeln"Reached end of file."; diff -r 69c094639823 -r d3484e841d1e src/HOL/ex/Comb.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/ex/Comb.thy Thu Apr 04 10:24:38 1996 +0200 @@ -0,0 +1,74 @@ +(* Title: HOL/ex/Comb.thy + ID: $Id$ + Author: Lawrence C Paulson + Copyright 1996 University of Cambridge + +Combinatory Logic example: the Church-Rosser Theorem +Curiously, combinators do not include free variables. + +Example taken from + J. Camilleri and T. F. Melham. + Reasoning with Inductively Defined Relations in the HOL Theorem Prover. + Report 265, University of Cambridge Computer Laboratory, 1992. +*) + + +Comb = Trancl + + +(** Datatype definition of combinators S and K, with infixed application **) +datatype comb = K + | S + | "#" comb comb (infixl 90) + +(** Inductive definition of contractions, -1-> + and (multi-step) reductions, ---> +**) +consts + contract :: "(comb*comb) set" + "-1->" :: [comb,comb] => bool (infixl 50) + "--->" :: [comb,comb] => bool (infixl 50) + +translations + "x -1-> y" == "(x,y) : contract" + "x ---> y" == "(x,y) : contract^*" + +inductive "contract" + intrs + K "K#x#y -1-> x" + S "S#x#y#z -1-> (x#z)#(y#z)" + Ap1 "x-1->y ==> x#z -1-> y#z" + Ap2 "x-1->y ==> z#x -1-> z#y" + + +(** Inductive definition of parallel contractions, =1=> + and (multi-step) parallel reductions, ===> +**) +consts + parcontract :: "(comb*comb) set" + "=1=>" :: [comb,comb] => bool (infixl 50) + "===>" :: [comb,comb] => bool (infixl 50) + +translations + "x =1=> y" == "(x,y) : parcontract" + "x ===> y" == "(x,y) : parcontract^*" + +inductive "parcontract" + intrs + refl "x =1=> x" + K "K#x#y =1=> x" + S "S#x#y#z =1=> (x#z)#(y#z)" + Ap "[| x=1=>y; z=1=>s |] ==> x#z =1=> y#s" + + +(*Misc definitions*) +constdefs + I :: comb + "I == S#K#K" + + (*confluence; Lambda/Commutation treats this more abstractly*) + diamond :: "('a * 'a)set => bool" + "diamond(r) == ALL x y. (x,y):r --> + (ALL y'. (x,y'):r --> + (EX z. (y,z):r & (y',z) : r))" + +end diff -r 69c094639823 -r d3484e841d1e src/HOL/ex/ROOT.ML --- a/src/HOL/ex/ROOT.ML Wed Apr 03 20:08:27 1996 +0200 +++ b/src/HOL/ex/ROOT.ML Thu Apr 04 10:24:38 1996 +0200 @@ -16,6 +16,7 @@ time_use_thy "String"; time_use_thy "BT"; time_use_thy "Perm"; +time_use_thy "Comb"; time_use_thy "InSort"; time_use_thy "Qsort"; time_use_thy "LexProd";