# HG changeset patch # User wenzelm # Date 861207332 -7200 # Node ID d35fca99b3be0dccbdf7fdec46c0c0cf53a443f4 # Parent d128ae3e742135763ba02bd9f3e1e6128eb30d88 Type inference (isolated from type.ML, completely reimplemented). diff -r d128ae3e7421 -r d35fca99b3be src/Pure/type_infer.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Pure/type_infer.ML Wed Apr 16 18:15:32 1997 +0200 @@ -0,0 +1,380 @@ +(* Title: Pure/type_infer.ML + ID: $Id$ + Author: Stefan Berghofer and Markus Wenzel, TU Muenchen + +Type inference. +*) + +signature TYPE_INFER = +sig + val infer_types: (string -> typ option) -> Sorts.classrel -> Sorts.arities + -> string list -> bool -> (indexname -> bool) -> term list -> typ list + -> term list * typ list * (indexname * typ) list +end; + +structure TypeInfer: TYPE_INFER = +struct + + +(** generic utils **) + +fun seq2 _ [] [] = () + | seq2 f (x :: xs) (y :: ys) = (f x y; seq2 f xs ys) + | seq2 _ _ _ = raise LIST "seq2"; + +fun scan _ (xs, []) = (xs, []) + | scan f (xs, y :: ys) = + let + val (xs', y') = f (xs, y); + val (xs'', ys') = scan f (xs', ys); + in (xs'', y' :: ys') end; + + + +(** term encodings **) + +(* + Flavours of term encodings: + + parse trees (type term): + A very complicated structure produced by the syntax module's + read functions. Encodes types and sorts as terms; may contain + explicit constraints and partial typing information (where + dummyT serves as wildcard). + + Parse trees are INTERNAL! Users should never encounter them, + except in parse / print translation functions. + + raw terms (type term): + Provide the user interface to type inferences. They may contain + partial type information (dummyT is wildcard) or explicit type + constraints (introduced via constrain: term -> typ -> term). + + The type inference function also lets users specify a certain + subset of TVars to be treated as non-rigid inference parameters. + + preterms (type preterm): + The internal representation for type inference. + + well-typed term (type term): + Fully typed lambda terms to be accepted by appropriate + certification functions. +*) + + + +(** pretyps and preterms **) + +(*links to parameters may get instantiated, anything else is rigid*) +datatype pretyp = + PType of string * pretyp list | + PTFree of string * sort | + PTVar of indexname * sort | + Param of sort | + Link of pretyp ref; + +datatype preterm = + PConst of string * pretyp | + PFree of string * pretyp | + PVar of indexname * pretyp | + PBound of int | + PAbs of string * pretyp * preterm | + PAppl of preterm * preterm | + Constraint of preterm * pretyp; + + +(* utils *) + +val mk_param = Link o ref o Param; + +fun deref (T as Link (ref (Param _))) = T + | deref (Link (ref T)) = deref T + | deref T = T; + +fun foldl_pretyps f (x, PConst (_, T)) = f (x, T) + | foldl_pretyps f (x, PFree (_, T)) = f (x, T) + | foldl_pretyps f (x, PVar (_, T)) = f (x, T) + | foldl_pretyps _ (x, PBound _) = x + | foldl_pretyps f (x, PAbs (_, T, t)) = foldl_pretyps f (f (x, T), t) + | foldl_pretyps f (x, PAppl (t, u)) = foldl_pretyps f (foldl_pretyps f (x, t), u) + | foldl_pretyps f (x, Constraint (t, T)) = f (foldl_pretyps f (x, t), T); + + + +(** raw typs/terms to pretyps/preterms **) + +(* pretyp(s)_of *) + +fun pretyp_of is_param (params, typ) = + let + fun add_parms (ps, TVar (xi as (x, _), S)) = + if is_param xi andalso is_none (assoc (ps, xi)) + then (xi, mk_param S) :: ps else ps + | add_parms (ps, TFree _) = ps + | add_parms (ps, Type (_, Ts)) = foldl add_parms (ps, Ts); + + val params' = add_parms (params, typ); + + fun pre_of (TVar (v as (xi, _))) = + (case assoc (params', xi) of + None => PTVar v + | Some p => p) + | pre_of (TFree v) = PTFree v + | pre_of (T as Type (a, Ts)) = + if T = dummyT then mk_param [] + else PType (a, map pre_of Ts); + in (params', pre_of typ) end; + +fun pretyps_of is_param = scan (pretyp_of is_param); + + +(* preterm(s)_of *) + +fun preterm_of const_type is_param ((vparams, params), tm) = + let + fun add_vparm (ps, xi) = + if is_none (assoc (ps, xi)) then + (xi, mk_param []) :: ps + else ps; + + fun add_vparms (ps, Var (xi, _)) = add_vparm (ps, xi) + | add_vparms (ps, Free (x, _)) = add_vparm (ps, (x, ~1)) + | add_vparms (ps, Abs (_, _, t)) = add_vparms (ps, t) + | add_vparms (ps, t $ u) = add_vparms (add_vparms (ps, t), u) + | add_vparms (ps, _) = ps; + + val vparams' = add_vparms (vparams, tm); + fun var_param xi = the (assoc (vparams', xi)); + + + val preT_of = pretyp_of is_param; + + fun constrain (ps, t) T = + if T = dummyT then (ps, t) + else + let val (ps', T') = preT_of (ps, T) in + (ps', Constraint (t, T')) + end; + + fun pre_of (ps, Const (c, T)) = + (case const_type c of + Some U => constrain (ps, PConst (c, snd (pretyp_of (K true) ([], U)))) T + | None => raise_type ("No such constant: " ^ quote c) [] []) + | pre_of (ps, Free (x, T)) = constrain (ps, PFree (x, var_param (x, ~1))) T + | pre_of (ps, Var (xi, T)) = constrain (ps, PVar (xi, var_param xi)) T + | pre_of (ps, Const ("_type_constraint_", T) $ t) = constrain (pre_of (ps, t)) T + | pre_of (ps, Bound i) = (ps, PBound i) + | pre_of (ps, Abs (x, T, t)) = + let + val (ps', T') = preT_of (ps, T); + val (ps'', t') = pre_of (ps', t); + in (ps'', PAbs (x, T', t')) end + | pre_of (ps, t $ u) = + let + val (ps', t') = pre_of (ps, t); + val (ps'', u') = pre_of (ps', u); + in (ps'', PAppl (t', u')) end; + + + val (params', tm') = pre_of (params, tm); + in + ((vparams', params'), tm') + end; + +fun preterms_of const_type is_param = scan (preterm_of const_type is_param); + + + +(** pretyps/terms to typs/terms **) + +(* add_parms *) + +fun add_parmsT (rs, PType (_, Ts)) = foldl add_parmsT (rs, Ts) + | add_parmsT (rs, Link (r as ref (Param _))) = r ins rs + | add_parmsT (rs, Link (ref T)) = add_parmsT (rs, T) + | add_parmsT (rs, _) = rs; + +val add_parms = foldl_pretyps add_parmsT; + + +(* add_names *) + +fun add_namesT (xs, PType (_, Ts)) = foldl add_namesT (xs, Ts) + | add_namesT (xs, PTFree (x, _)) = x ins xs + | add_namesT (xs, PTVar ((x, _), _)) = x ins xs + | add_namesT (xs, Link (ref T)) = add_namesT (xs, T) + | add_namesT (xs, Param _) = xs; + +val add_names = foldl_pretyps add_namesT; + + +(* simple_typ/term_of *) + +(*deref links, fail on params*) +fun simple_typ_of (PType (a, Ts)) = Type (a, map simple_typ_of Ts) + | simple_typ_of (PTFree v) = TFree v + | simple_typ_of (PTVar v) = TVar v + | simple_typ_of (Link (ref T)) = simple_typ_of T + | simple_typ_of (Param _) = sys_error "simple_typ_of: illegal Param"; + +(*convert types, drop constraints*) +fun simple_term_of (PConst (c, T)) = Const (c, simple_typ_of T) + | simple_term_of (PFree (x, T)) = Free (x, simple_typ_of T) + | simple_term_of (PVar (xi, T)) = Var (xi, simple_typ_of T) + | simple_term_of (PBound i) = Bound i + | simple_term_of (PAbs (x, T, t)) = Abs (x, simple_typ_of T, simple_term_of t) + | simple_term_of (PAppl (t, u)) = simple_term_of t $ simple_term_of u + | simple_term_of (Constraint (t, _)) = simple_term_of t; + + +(* typs_terms_of *) (*DESTRUCTIVE*) + +fun typs_terms_of used mk_var prfx (Ts, ts) = + let + fun elim (r as ref (Param S)) x = r := mk_var (x, S) + | elim _ _ = (); + + val used' = foldl add_names (foldl add_namesT (used, Ts), ts); + val parms = rev (foldl add_parms (foldl add_parmsT ([], Ts), ts)); + val pre_names = replicate (length parms) (prfx ^ "'"); + val names = variantlist (pre_names, prfx ^ "'" :: used'); + in + seq2 elim parms names; + (map simple_typ_of Ts, map simple_term_of ts) + end; + + + +(** order-sorted unification of types **) (*DESTRUCTIVE*) + +exception NO_UNIFIER of string; + + +fun unify classrel arities = + let + + (* adjust sorts of parameters *) + + fun not_in_sort x S' S = + "Type variable " ^ x ^ "::" ^ Sorts.str_of_sort S' ^ " not in sort " ^ + Sorts.str_of_sort S; + + fun meet _ [] = () + | meet (Link (r as (ref (Param S')))) S = + if Sorts.sort_le classrel (S', S) then () + else r := mk_param (Sorts.inter_sort classrel (S', S)) + | meet (Link (ref T)) S = meet T S + | meet (PType (a, Ts)) S = + seq2 meet Ts (Sorts.mg_domain classrel arities a S + handle TYPE (msg, _, _) => raise NO_UNIFIER msg) + | meet (PTFree (x, S')) S = + if Sorts.sort_le classrel (S', S) then () + else raise NO_UNIFIER (not_in_sort x S' S) + | meet (PTVar (xi, S')) S = + if Sorts.sort_le classrel (S', S) then () + else raise NO_UNIFIER (not_in_sort (Syntax.string_of_vname xi) S' S) + | meet (Param _) _ = sys_error "meet"; + + + (* occurs check and assigment *) + + fun occurs_check r (Link (r' as ref T)) = + if r = r' then raise NO_UNIFIER "Occurs check!" + else occurs_check r T + | occurs_check r (PType (_, Ts)) = seq (occurs_check r) Ts + | occurs_check _ _ = (); + + fun assign r T S = + (case deref T of + T' as Link (r' as ref (Param _)) => + if r = r' then () else (r := T'; meet T' S) + | T' => (occurs_check r T'; r := T'; meet T' S)); + + + (* unification *) + + fun unif (Link (r as ref (Param S))) T = assign r T S + | unif T (Link (r as ref (Param S))) = assign r T S + | unif (Link (ref T)) U = unif T U + | unif T (Link (ref U)) = unif T U + | unif (PType (a, Ts)) (PType (b, Us)) = + if a <> b then raise NO_UNIFIER ("Clash of " ^ a ^ ", " ^ b ^ "!") + else seq2 unif Ts Us + | unif T U = if T = U then () else raise NO_UNIFIER "Unification failed!"; + + in unif end; + + + +(** type inference **) + +(* infer *) (*DESTRUCTIVE*) + +fun infer classrel arities = + let + val unif = unify classrel arities; + + fun err msg1 msg2 bs ts Ts = + let + val (Ts_bTs', ts') = typs_terms_of [] PTFree "??" (Ts @ map snd bs, ts); + val len = length Ts; + val Ts' = take (len, Ts_bTs'); + val xs = map Free (map fst bs ~~ drop (len, Ts_bTs')); + val ts'' = map (fn t => subst_bounds (xs, t)) ts'; + in + raise_type (msg1 ^ " " ^ msg2) Ts' ts'' + end; + + fun inf _ (PConst (_, T)) = T + | inf _ (PFree (_, T)) = T + | inf _ (PVar (_, T)) = T + | inf bs (PBound i) = snd (nth_elem (i, bs) + handle LIST _ => raise_type "Loose bound variable" [] [Bound i]) + | inf bs (PAbs (x, T, t)) = PType ("fun", [T, inf ((x, T) :: bs) t]) + | inf bs (PAppl (t, u)) = + let + val T = inf bs t; + val U = inf bs u; + val V = mk_param []; + val U_to_V = PType ("fun", [U, V]); + val _ = unif U_to_V T handle NO_UNIFIER msg => + err msg "Bad function application." bs [PAppl (t, u)] [U_to_V, U]; + in V end + | inf bs (Constraint (t, U)) = + let val T = inf bs t in + unif T U handle NO_UNIFIER msg => + err msg "Cannot meet type constraint." bs [t] [T, U]; + T + end; + + in inf [] end; + + +(* infer_types *) + +fun infer_types const_type classrel arities used freeze is_param ts Ts = + let + (*convert to preterms/typs*) + val (Tps, Ts') = pretyps_of (K true) ([], Ts); + val ((vps, ps), ts') = preterms_of const_type is_param (([], Tps), ts); + + (*run type inference*) + val tTs' = ListPair.map Constraint (ts', Ts'); + val _ = seq (fn t => (infer classrel arities t; ())) tTs'; + + (*collect result unifier*) + fun ch_var (xi, Link (r as ref (Param S))) = (r := PTVar (xi, S); None) + | ch_var xi_T = Some xi_T; + val env = mapfilter ch_var Tps; + + (*convert back to terms/typs*) + val mk_var = + if freeze then PTFree + else (fn (x, S) => PTVar ((x, 0), S)); + val (final_Ts, final_ts) = typs_terms_of used mk_var "" (Ts', ts'); + val final_env = map (apsnd simple_typ_of) env; + in + (final_ts, final_Ts, final_env) + end; + +end;