# HG changeset patch # User immler # Date 1546858278 -3600 # Node ID d469a1340e21ad2d5b82b41b681902bb9e51c06e # Parent 1331e57b54c61d022494122470c566054c4fbc85 generalized diff -r 1331e57b54c6 -r d469a1340e21 src/HOL/Analysis/Connected.thy --- a/src/HOL/Analysis/Connected.thy Mon Jan 07 11:29:34 2019 +0100 +++ b/src/HOL/Analysis/Connected.thy Mon Jan 07 11:51:18 2019 +0100 @@ -646,13 +646,13 @@ subsection\Various separability-type properties\ lemma univ_second_countable: - obtains \ :: "'a::euclidean_space set set" + obtains \ :: "'a::second_countable_topology set set" where "countable \" "\C. C \ \ \ open C" "\S. open S \ \U. U \ \ \ S = \U" by (metis ex_countable_basis topological_basis_def) lemma subset_second_countable: - obtains \ :: "'a:: euclidean_space set set" + obtains \ :: "'a:: second_countable_topology set set" where "countable \" "{} \ \" "\C. C \ \ \ openin(subtopology euclidean S) C" @@ -729,10 +729,10 @@ qed proposition separable: - fixes S :: "'a:: euclidean_space set" + fixes S :: "'a::{metric_space, second_countable_topology} set" obtains T where "countable T" "T \ S" "S \ closure T" proof - - obtain \ :: "'a:: euclidean_space set set" + obtain \ :: "'a set set" where "countable \" and "{} \ \" and ope: "\C. C \ \ \ openin(subtopology euclidean S) C" @@ -775,7 +775,7 @@ qed proposition Lindelof: - fixes \ :: "'a::euclidean_space set set" + fixes \ :: "'a::second_countable_topology set set" assumes \: "\S. S \ \ \ open S" obtains \' where "\' \ \" "countable \'" "\\' = \\" proof - @@ -806,7 +806,7 @@ qed lemma Lindelof_openin: - fixes \ :: "'a::euclidean_space set set" + fixes \ :: "'a::second_countable_topology set set" assumes "\S. S \ \ \ openin (subtopology euclidean U) S" obtains \' where "\' \ \" "countable \'" "\\' = \\" proof - @@ -824,7 +824,7 @@ qed lemma countable_disjoint_open_subsets: - fixes \ :: "'a::euclidean_space set set" + fixes \ :: "'a::second_countable_topology set set" assumes "\S. S \ \ \ open S" and pw: "pairwise disjnt \" shows "countable \" proof - @@ -837,7 +837,7 @@ qed lemma countable_disjoint_nonempty_interior_subsets: - fixes \ :: "'a::euclidean_space set set" + fixes \ :: "'a::second_countable_topology set set" assumes pw: "pairwise disjnt \" and int: "\S. \S \ \; interior S = {}\ \ S = {}" shows "countable \" proof (rule countable_image_inj_on)