# HG changeset patch # User haftmann # Date 1433177961 -7200 # Node ID d46de31a50c483faf71434410114d1567f57ea62 # Parent 5cdf3903a302de123ec8184d734dd3b3fa35671f separate class for division operator, with particular syntax added in more specific classes diff -r 5cdf3903a302 -r d46de31a50c4 NEWS --- a/NEWS Mon Jun 01 18:59:21 2015 +0200 +++ b/NEWS Mon Jun 01 18:59:21 2015 +0200 @@ -36,6 +36,14 @@ * Nitpick: - Removed "check_potential" and "check_genuine" options. +* Constants Fields.divide (... / ...) and Divides.div (... div ...) +are logically unified to Rings.divide in syntactic type class +Rings.divide, with particular infix syntax added as abbreviations +in classes Fields.inverse and Divides.div respectively. INCOMPATIBILITY, +instantiatios must refer to Rings.divide rather than the former +separate constants, and infix syntax is usually not available during +instantiation. + New in Isabelle2015 (May 2015) ------------------------------ diff -r 5cdf3903a302 -r d46de31a50c4 src/Doc/Main/Main_Doc.thy --- a/src/Doc/Main/Main_Doc.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/Doc/Main/Main_Doc.thy Mon Jun 01 18:59:21 2015 +0200 @@ -325,7 +325,7 @@ @{const abs} & @{typeof abs}\\ @{const sgn} & @{typeof sgn}\\ @{const dvd_class.dvd} & @{typeof "dvd_class.dvd"}\\ -@{const div_class.div} & @{typeof "div_class.div"}\\ +@{const Rings.divide} & @{typeof Rings.divide}\\ @{const div_class.mod} & @{typeof "div_class.mod"}\\ \end{supertabular} diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Code_Numeral.thy --- a/src/HOL/Code_Numeral.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Code_Numeral.thy Mon Jun 01 18:59:21 2015 +0200 @@ -150,11 +150,11 @@ instantiation integer :: "{ring_div, equal, linordered_idom}" begin -lift_definition div_integer :: "integer \ integer \ integer" - is "Divides.div :: int \ int \ int" +lift_definition divide_integer :: "integer \ integer \ integer" + is "divide :: int \ int \ int" . -declare div_integer.rep_eq [simp] +declare divide_integer.rep_eq [simp] lift_definition mod_integer :: "integer \ integer \ integer" is "Divides.mod :: int \ int \ int" @@ -709,11 +709,11 @@ instantiation natural :: "{semiring_div, equal, linordered_semiring}" begin -lift_definition div_natural :: "natural \ natural \ natural" - is "Divides.div :: nat \ nat \ nat" +lift_definition divide_natural :: "natural \ natural \ natural" + is "divide :: nat \ nat \ nat" . -declare div_natural.rep_eq [simp] +declare divide_natural.rep_eq [simp] lift_definition mod_natural :: "natural \ natural \ natural" is "Divides.mod :: nat \ nat \ nat" diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Complex.thy Mon Jun 01 18:59:21 2015 +0200 @@ -70,7 +70,7 @@ "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)" | "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)" -definition "x / (y\complex) = x * inverse y" +definition "divide x (y\complex) = x * inverse y" instance by intro_classes diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Decision_Procs/Dense_Linear_Order.thy --- a/src/HOL/Decision_Procs/Dense_Linear_Order.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Decision_Procs/Dense_Linear_Order.thy Mon Jun 01 18:59:21 2015 +0200 @@ -710,7 +710,7 @@ fun dest_frac ct = case Thm.term_of ct of - Const (@{const_name Fields.divide},_) $ a $ b=> + Const (@{const_name Rings.divide},_) $ a $ b=> Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b)) | Const(@{const_name inverse}, _)$a => Rat.rat_of_quotient(1, HOLogic.dest_number a |> snd) | t => Rat.rat_of_int (snd (HOLogic.dest_number t)) diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy --- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Mon Jun 01 18:59:21 2015 +0200 @@ -4033,7 +4033,7 @@ @{code poly.Mul} (num_of_term ps a, num_of_term ps b) | num_of_term ps (Const (@{const_name Power.power}, _) $ a $ n) = @{code poly.Pw} (num_of_term ps a, @{code nat_of_integer} (dest_nat n)) - | num_of_term ps (Const (@{const_name Fields.divide}, _) $ a $ b) = + | num_of_term ps (Const (@{const_name Rings.divide}, _) $ a $ b) = mk_C (dest_num a, dest_num b) | num_of_term ps t = (case try_dest_num t of @@ -4087,7 +4087,7 @@ (if d = 1 then HOLogic.mk_number T c else if d = 0 then Const (@{const_name Groups.zero}, T) else - Const (@{const_name Fields.divide}, binopT T) $ + Const (@{const_name Rings.divide}, binopT T) $ HOLogic.mk_number T c $ HOLogic.mk_number T d) end | term_of_num T ps (@{code poly.Bound} i) = nth ps (@{code integer_of_nat} i) diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Divides.thy --- a/src/HOL/Divides.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Divides.thy Mon Jun 01 18:59:21 2015 +0200 @@ -11,10 +11,15 @@ subsection {* Syntactic division operations *} -class div = dvd + - fixes div :: "'a \ 'a \ 'a" (infixl "div" 70) - and mod :: "'a \ 'a \ 'a" (infixl "mod" 70) - +class div = dvd + divide + + fixes mod :: "'a \ 'a \ 'a" (infixl "mod" 70) +begin + +abbreviation div :: "'a \ 'a \ 'a" (infixl "div" 70) +where + "op div \ divide" + +end subsection {* Abstract division in commutative semirings. *} @@ -951,19 +956,26 @@ shows "divmod_nat m n = qr" using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat) +instantiation nat :: "Divides.div" +begin + +definition divide_nat where + div_nat_def: "divide m n = fst (divmod_nat m n)" + +definition mod_nat where + "m mod n = snd (divmod_nat m n)" + +instance .. + +end + instantiation nat :: semiring_div begin -definition div_nat where - "m div n = fst (divmod_nat m n)" - lemma fst_divmod_nat [simp]: "fst (divmod_nat m n) = m div n" by (simp add: div_nat_def) -definition mod_nat where - "m mod n = snd (divmod_nat m n)" - lemma snd_divmod_nat [simp]: "snd (divmod_nat m n) = m mod n" by (simp add: mod_nat_def) @@ -1069,7 +1081,7 @@ ML {* structure Cancel_Div_Mod_Nat = Cancel_Div_Mod ( - val div_name = @{const_name div}; + val div_name = @{const_name divide}; val mod_name = @{const_name mod}; val mk_binop = HOLogic.mk_binop; val mk_plus = HOLogic.mk_binop @{const_name Groups.plus}; @@ -1184,18 +1196,23 @@ "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)" by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel) -lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c" - apply (cut_tac m = q and n = c in mod_less_divisor) - apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto) - apply (erule_tac P = "%x. lhs < rhs x" for lhs rhs in ssubst) - apply (simp add: add_mult_distrib2) - done - lemma divmod_nat_rel_mult2_eq: - "divmod_nat_rel a b (q, r) - \ divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)" -by (auto simp add: mult.commute mult.left_commute divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma) - + assumes "divmod_nat_rel a b (q, r)" + shows "divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)" +proof - + { assume "r < b" and "0 < c" + then have "b * (q mod c) + r < b * c" + apply (cut_tac m = q and n = c in mod_less_divisor) + apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto) + apply (erule_tac P = "%x. lhs < rhs x" for lhs rhs in ssubst) + apply (simp add: add_mult_distrib2) + done + then have "r + b * (q mod c) < b * c" + by (simp add: ac_simps) + } with assms show ?thesis + by (auto simp add: divmod_nat_rel_def algebra_simps add_mult_distrib2 [symmetric]) +qed + lemma div_mult2_eq: "a div (b * c) = (a div b) div (c::nat)" by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique]) @@ -1583,8 +1600,16 @@ using odd_succ_div_two [of n] by simp lemma odd_two_times_div_two_nat [simp]: - "odd n \ 2 * (n div 2) = n - (1 :: nat)" - using odd_two_times_div_two_succ [of n] by simp + assumes "odd n" + shows "2 * (n div 2) = n - (1 :: nat)" +proof - + from assms have "2 * (n div 2) + 1 = n" + by (rule odd_two_times_div_two_succ) + then have "Suc (2 * (n div 2)) - 1 = n - 1" + by simp + then show ?thesis + by simp +qed lemma odd_Suc_minus_one [simp]: "odd n \ Suc (n - Suc 0) = n" @@ -1669,24 +1694,24 @@ instantiation int :: Divides.div begin -definition div_int where - "a div b = fst (divmod_int a b)" +definition divide_int where + div_int_def: "divide a b = fst (divmod_int a b)" + +definition mod_int where + "a mod b = snd (divmod_int a b)" + +instance .. + +end lemma fst_divmod_int [simp]: "fst (divmod_int a b) = a div b" by (simp add: div_int_def) -definition mod_int where - "a mod b = snd (divmod_int a b)" - lemma snd_divmod_int [simp]: "snd (divmod_int a b) = a mod b" by (simp add: mod_int_def) -instance .. - -end - lemma divmod_int_mod_div: "divmod_int p q = (p div q, p mod q)" by (simp add: prod_eq_iff) @@ -1909,7 +1934,7 @@ ML {* structure Cancel_Div_Mod_Int = Cancel_Div_Mod ( - val div_name = @{const_name div}; + val div_name = @{const_name Rings.divide}; val mod_name = @{const_name mod}; val mk_binop = HOLogic.mk_binop; val mk_sum = Arith_Data.mk_sum HOLogic.intT; diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Enum.thy --- a/src/HOL/Enum.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Enum.thy Mon Jun 01 18:59:21 2015 +0200 @@ -585,12 +585,11 @@ definition [simp]: "Groups.one = a\<^sub>1" definition [simp]: "op + = (\_ _. a\<^sub>1)" definition [simp]: "op * = (\_ _. a\<^sub>1)" -definition [simp]: "op div = (\_ _. a\<^sub>1)" definition [simp]: "op mod = (\_ _. a\<^sub>1)" definition [simp]: "abs = (\_. a\<^sub>1)" definition [simp]: "sgn = (\_. a\<^sub>1)" definition [simp]: "inverse = (\_. a\<^sub>1)" -definition [simp]: "op / = (\_ _. a\<^sub>1)" +definition [simp]: "divide = (\_ _. a\<^sub>1)" instance by intro_classes(simp_all add: less_finite_1_def) end @@ -691,15 +690,14 @@ definition "op - = (op + :: finite_2 \ _)" definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \ a\<^sub>2 | _ \ a\<^sub>1)" definition "inverse = (\x :: finite_2. x)" -definition "op / = (op * :: finite_2 \ _)" +definition "divide = (op * :: finite_2 \ _)" definition "abs = (\x :: finite_2. x)" -definition "op div = (op / :: finite_2 \ _)" definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \ a\<^sub>2 | _ \ a\<^sub>1)" definition "sgn = (\x :: finite_2. x)" instance by intro_classes (simp_all add: plus_finite_2_def uminus_finite_2_def minus_finite_2_def times_finite_2_def - inverse_finite_2_def divide_finite_2_def abs_finite_2_def div_finite_2_def mod_finite_2_def sgn_finite_2_def + inverse_finite_2_def divide_finite_2_def abs_finite_2_def mod_finite_2_def sgn_finite_2_def split: finite_2.splits) end @@ -819,15 +817,14 @@ definition "x - y = x + (- y :: finite_3)" definition "x * y = (case (x, y) of (a\<^sub>2, a\<^sub>2) \ a\<^sub>2 | (a\<^sub>3, a\<^sub>3) \ a\<^sub>2 | (a\<^sub>2, a\<^sub>3) \ a\<^sub>3 | (a\<^sub>3, a\<^sub>2) \ a\<^sub>3 | _ \ a\<^sub>1)" definition "inverse = (\x :: finite_3. x)" -definition "x / y = x * inverse (y :: finite_3)" +definition "divide x y = x * inverse (y :: finite_3)" definition "abs = (\x :: finite_3. x)" -definition "op div = (op / :: finite_3 \ _)" definition "x mod y = (case (x, y) of (a\<^sub>2, a\<^sub>1) \ a\<^sub>2 | (a\<^sub>3, a\<^sub>1) \ a\<^sub>3 | _ \ a\<^sub>1)" definition "sgn = (\x. case x of a\<^sub>1 \ a\<^sub>1 | _ \ a\<^sub>2)" instance by intro_classes (simp_all add: plus_finite_3_def uminus_finite_3_def minus_finite_3_def times_finite_3_def - inverse_finite_3_def divide_finite_3_def abs_finite_3_def div_finite_3_def mod_finite_3_def sgn_finite_3_def + inverse_finite_3_def divide_finite_3_def abs_finite_3_def mod_finite_3_def sgn_finite_3_def less_finite_3_def split: finite_3.splits) end diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Fields.thy --- a/src/HOL/Fields.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Fields.thy Mon Jun 01 18:59:21 2015 +0200 @@ -19,35 +19,16 @@ A division ring is like a field, but without the commutativity requirement. *} -class inverse = +class inverse = divide + fixes inverse :: "'a \ 'a" - and divide :: "'a \ 'a \ 'a" (infixl "'/" 70) - -setup {* Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a \ 'a \ 'a"}) *} - - -context semiring begin - -lemma [field_simps]: - shows distrib_left_NO_MATCH: "NO_MATCH (x / y) a \ a * (b + c) = a * b + a * c" - and distrib_right_NO_MATCH: "NO_MATCH (x / y) c \ (a + b) * c = a * c + b * c" - by (rule distrib_left distrib_right)+ + +abbreviation inverse_divide :: "'a \ 'a \ 'a" (infixl "'/" 70) +where + "inverse_divide \ divide" end -context ring -begin - -lemma [field_simps]: - shows left_diff_distrib_NO_MATCH: "NO_MATCH (x / y) c \ (a - b) * c = a * c - b * c" - and right_diff_distrib_NO_MATCH: "NO_MATCH (x / y) a \ a * (b - c) = a * b - a * c" - by (rule left_diff_distrib right_diff_distrib)+ - -end - -setup {* Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a::inverse \ 'a \ 'a"}) *} - text{* Lemmas @{text divide_simps} move division to the outside and eliminates them on (in)equalities. *} named_theorems divide_simps "rewrite rules to eliminate divisions" @@ -385,6 +366,7 @@ lemma diff_frac_eq: "y \ 0 \ z \ 0 \ x / y - w / z = (x * z - w * y) / (y * z)" + thm field_simps by (simp add: field_simps) lemma frac_eq_eq: diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Bit.thy --- a/src/HOL/Library/Bit.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Bit.thy Mon Jun 01 18:59:21 2015 +0200 @@ -117,7 +117,7 @@ "inverse x = (x :: bit)" definition divide_bit_def [simp]: - "x / y = (x * y :: bit)" + "divide x y = (x * y :: bit)" lemmas field_bit_defs = plus_bit_def times_bit_def minus_bit_def uminus_bit_def @@ -201,4 +201,3 @@ hide_const (open) set end - diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Extended_Real.thy Mon Jun 01 18:59:21 2015 +0200 @@ -1403,7 +1403,7 @@ by (auto intro: ereal_cases) termination by (relation "{}") simp -definition "x / y = x * inverse (y :: ereal)" +definition "divide x y = x * inverse (y :: ereal)" instance .. diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Fraction_Field.thy --- a/src/HOL/Library/Fraction_Field.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Fraction_Field.thy Mon Jun 01 18:59:21 2015 +0200 @@ -241,9 +241,9 @@ by (simp add: Fract_def inverse_fract_def UN_fractrel) qed -definition divide_fract_def: "q / r = q * inverse (r:: 'a fract)" +definition divide_fract_def: "divide q r = q * inverse (r:: 'a fract)" -lemma divide_fract [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)" +lemma divide_fract [simp]: "divide (Fract a b) (Fract c d) = Fract (a * d) (b * c)" by (simp add: divide_fract_def) instance @@ -255,7 +255,7 @@ (simp_all add: fract_expand eq_fract mult.commute) next fix q r :: "'a fract" - show "q / r = q * inverse r" by (simp add: divide_fract_def) + show "divide q r = q * inverse r" by (simp add: divide_fract_def) next show "inverse 0 = (0:: 'a fract)" by (simp add: fract_expand) (simp add: fract_collapse) diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Function_Division.thy --- a/src/HOL/Library/Function_Division.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Function_Division.thy Mon Jun 01 18:59:21 2015 +0200 @@ -15,7 +15,7 @@ definition "inverse f = inverse \ f" -definition "(f / g) = (\x. f x / g x)" +definition "divide f g = (\x. f x / g x)" instance .. @@ -63,4 +63,3 @@ *} end - diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Nat_Bijection.thy --- a/src/HOL/Library/Nat_Bijection.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Nat_Bijection.thy Mon Jun 01 18:59:21 2015 +0200 @@ -336,10 +336,19 @@ lemma set_decode_plus_power_2: "n \ set_decode z \ set_decode (2 ^ n + z) = insert n (set_decode z)" - apply (induct n arbitrary: z, simp_all) - apply (rule set_eqI, induct_tac x, simp, simp) - apply (rule set_eqI, induct_tac x, simp, simp add: add.commute) -done +proof (induct n arbitrary: z) + case 0 show ?case + proof (rule set_eqI) + fix q show "q \ set_decode (2 ^ 0 + z) \ q \ insert 0 (set_decode z)" + by (induct q) (insert 0, simp_all) + qed +next + case (Suc n) show ?case + proof (rule set_eqI) + fix q show "q \ set_decode (2 ^ Suc n + z) \ q \ insert (Suc n) (set_decode z)" + by (induct q) (insert Suc, simp_all) + qed +qed lemma finite_set_decode [simp]: "finite (set_decode n)" apply (induct n rule: nat_less_induct) @@ -389,4 +398,3 @@ qed end - diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Old_SMT/old_smt_normalize.ML --- a/src/HOL/Library/Old_SMT/old_smt_normalize.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Old_SMT/old_smt_normalize.ML Mon Jun 01 18:59:21 2015 +0200 @@ -429,7 +429,7 @@ @{const Suc}, @{const plus (nat)}, @{const minus (nat)}] val mult_nat_ops = - [@{const times (nat)}, @{const div (nat)}, @{const mod (nat)}] + [@{const times (nat)}, @{const divide (nat)}, @{const mod (nat)}] val nat_ops = simple_nat_ops @ mult_nat_ops diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Old_SMT/old_z3_interface.ML --- a/src/HOL/Library/Old_SMT/old_z3_interface.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Old_SMT/old_z3_interface.ML Mon Jun 01 18:59:21 2015 +0200 @@ -41,7 +41,7 @@ has_datatypes=true} end - fun is_div_mod @{const div (int)} = true + fun is_div_mod @{const divide (int)} = true | is_div_mod @{const mod (int)} = true | is_div_mod _ = false diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Polynomial.thy --- a/src/HOL/Library/Polynomial.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Polynomial.thy Mon Jun 01 18:59:21 2015 +0200 @@ -1360,14 +1360,14 @@ instantiation poly :: (field) ring_div begin -definition div_poly where - "x div y = (THE q. \r. pdivmod_rel x y q r)" +definition divide_poly where + div_poly_def: "divide x y = (THE q. \r. pdivmod_rel x y q r)" definition mod_poly where "x mod y = (THE r. \q. pdivmod_rel x y q r)" lemma div_poly_eq: - "pdivmod_rel x y q r \ x div y = q" + "pdivmod_rel x y q r \ divide x y = q" unfolding div_poly_def by (fast elim: pdivmod_rel_unique_div) @@ -1377,7 +1377,7 @@ by (fast elim: pdivmod_rel_unique_mod) lemma pdivmod_rel: - "pdivmod_rel x y (x div y) (x mod y)" + "pdivmod_rel x y (divide x y) (x mod y)" proof - from pdivmod_rel_exists obtain q r where "pdivmod_rel x y q r" by fast @@ -1387,41 +1387,41 @@ instance proof fix x y :: "'a poly" - show "x div y * y + x mod y = x" + show "divide x y * y + x mod y = x" using pdivmod_rel [of x y] by (simp add: pdivmod_rel_def) next fix x :: "'a poly" have "pdivmod_rel x 0 0 x" by (rule pdivmod_rel_by_0) - thus "x div 0 = 0" + thus "divide x 0 = 0" by (rule div_poly_eq) next fix y :: "'a poly" have "pdivmod_rel 0 y 0 0" by (rule pdivmod_rel_0) - thus "0 div y = 0" + thus "divide 0 y = 0" by (rule div_poly_eq) next fix x y z :: "'a poly" assume "y \ 0" - hence "pdivmod_rel (x + z * y) y (z + x div y) (x mod y)" + hence "pdivmod_rel (x + z * y) y (z + divide x y) (x mod y)" using pdivmod_rel [of x y] by (simp add: pdivmod_rel_def distrib_right) - thus "(x + z * y) div y = z + x div y" + thus "divide (x + z * y) y = z + divide x y" by (rule div_poly_eq) next fix x y z :: "'a poly" assume "x \ 0" - show "(x * y) div (x * z) = y div z" + show "divide (x * y) (x * z) = divide y z" proof (cases "y \ 0 \ z \ 0") have "\x::'a poly. pdivmod_rel x 0 0 x" by (rule pdivmod_rel_by_0) - then have [simp]: "\x::'a poly. x div 0 = 0" + then have [simp]: "\x::'a poly. divide x 0 = 0" by (rule div_poly_eq) have "\x::'a poly. pdivmod_rel 0 x 0 0" by (rule pdivmod_rel_0) - then have [simp]: "\x::'a poly. 0 div x = 0" + then have [simp]: "\x::'a poly. divide 0 x = 0" by (rule div_poly_eq) case False then show ?thesis by auto next @@ -1430,8 +1430,8 @@ have "\q r. pdivmod_rel y z q r \ pdivmod_rel (x * y) (x * z) q (x * r)" by (auto simp add: pdivmod_rel_def algebra_simps) (rule classical, simp add: degree_mult_eq) - moreover from pdivmod_rel have "pdivmod_rel y z (y div z) (y mod z)" . - ultimately have "pdivmod_rel (x * y) (x * z) (y div z) (x * (y mod z))" . + moreover from pdivmod_rel have "pdivmod_rel y z (divide y z) (y mod z)" . + ultimately have "pdivmod_rel (x * y) (x * z) (divide y z) (x * (y mod z))" . then show ?thesis by (simp add: div_poly_eq) qed qed diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Library/Predicate_Compile_Alternative_Defs.thy --- a/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Library/Predicate_Compile_Alternative_Defs.thy Mon Jun 01 18:59:21 2015 +0200 @@ -53,7 +53,7 @@ setup {* Predicate_Compile_Data.ignore_consts [@{const_name numeral}] *} setup {* Predicate_Compile_Data.keep_functions [@{const_name numeral}] *} -setup {* Predicate_Compile_Data.ignore_consts [@{const_name div}, @{const_name mod}, @{const_name times}] *} +setup {* Predicate_Compile_Data.ignore_consts [@{const_name divide}, @{const_name mod}, @{const_name times}] *} section {* Arithmetic operations *} diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Mutabelle/mutabelle_extra.ML --- a/src/HOL/Mutabelle/mutabelle_extra.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Mutabelle/mutabelle_extra.ML Mon Jun 01 18:59:21 2015 +0200 @@ -283,14 +283,13 @@ (@{const_name "Groups.plus_class.plus"}, @{typ "prop => prop => prop"}), (@{const_name "Groups.minus_class.minus"}, @{typ "prop => prop => prop"}), (@{const_name "Groups.times_class.times"}, @{typ "prop => prop => prop"}), - (@{const_name "Fields.inverse_class.divide"}, @{typ "prop => prop => prop"}), - (@{const_name "Lattices.inf_class.inf"}, @{typ "prop => prop => prop"}), + (@{const_name "Lattices.inf_class.inf"}, @{typ "prop => prop => prop"}), (@{const_name "Lattices.sup_class.sup"}, @{typ "prop => prop => prop"}), (@{const_name "Orderings.bot_class.bot"}, @{typ "prop => prop => prop"}), (@{const_name "Orderings.ord_class.min"}, @{typ "prop => prop => prop"}), (@{const_name "Orderings.ord_class.max"}, @{typ "prop => prop => prop"}), (@{const_name "Divides.div_class.mod"}, @{typ "prop => prop => prop"}), - (@{const_name "Divides.div_class.div"}, @{typ "prop => prop => prop"}), + (@{const_name Rings.divide}, @{typ "prop => prop => prop"}), (@{const_name "GCD.gcd_class.gcd"}, @{typ "prop => prop => prop"}), (@{const_name "GCD.gcd_class.lcm"}, @{typ "prop => prop => prop"}), (@{const_name "Orderings.bot_class.bot"}, @{typ "bool => prop"}), diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/NSA/StarDef.thy --- a/src/HOL/NSA/StarDef.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/NSA/StarDef.thy Mon Jun 01 18:59:21 2015 +0200 @@ -505,11 +505,18 @@ end -instantiation star :: (inverse) inverse +instantiation star :: (divide) divide begin definition - star_divide_def: "(op /) \ *f2* (op /)" + star_divide_def: "divide \ *f2* divide" + +instance .. + +end + +instantiation star :: (inverse) inverse +begin definition star_inverse_def: "inverse \ *f* inverse" @@ -524,9 +531,6 @@ begin definition - star_div_def: "(op div) \ *f2* (op div)" - -definition star_mod_def: "(op mod) \ *f2* (op mod)" instance .. @@ -551,7 +555,7 @@ star_add_def star_diff_def star_minus_def star_mult_def star_divide_def star_inverse_def star_le_def star_less_def star_abs_def star_sgn_def - star_div_def star_mod_def + star_mod_def text {* Class operations preserve standard elements *} @@ -573,7 +577,7 @@ lemma Standard_mult: "\x \ Standard; y \ Standard\ \ x * y \ Standard" by (simp add: star_mult_def) -lemma Standard_divide: "\x \ Standard; y \ Standard\ \ x / y \ Standard" +lemma Standard_divide: "\x \ Standard; y \ Standard\ \ divide x y \ Standard" by (simp add: star_divide_def) lemma Standard_inverse: "x \ Standard \ inverse x \ Standard" @@ -582,17 +586,14 @@ lemma Standard_abs: "x \ Standard \ abs x \ Standard" by (simp add: star_abs_def) -lemma Standard_div: "\x \ Standard; y \ Standard\ \ x div y \ Standard" -by (simp add: star_div_def) - lemma Standard_mod: "\x \ Standard; y \ Standard\ \ x mod y \ Standard" by (simp add: star_mod_def) lemmas Standard_simps [simp] = Standard_zero Standard_one - Standard_add Standard_diff Standard_minus + Standard_add Standard_diff Standard_minus Standard_mult Standard_divide Standard_inverse - Standard_abs Standard_div Standard_mod + Standard_abs Standard_mod text {* @{term star_of} preserves class operations *} @@ -614,9 +615,6 @@ lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)" by transfer (rule refl) -lemma star_of_div: "star_of (x div y) = star_of x div star_of y" -by transfer (rule refl) - lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y" by transfer (rule refl) @@ -665,7 +663,7 @@ lemmas star_of_simps [simp] = star_of_add star_of_diff star_of_minus star_of_mult star_of_divide star_of_inverse - star_of_div star_of_mod star_of_abs + star_of_mod star_of_abs star_of_zero star_of_one star_of_less star_of_le star_of_eq star_of_0_less star_of_0_le star_of_0_eq diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Rat.thy --- a/src/HOL/Rat.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Rat.thy Mon Jun 01 18:59:21 2015 +0200 @@ -162,9 +162,9 @@ by transfer simp definition - divide_rat_def: "q / r = q * inverse (r::rat)" + divide_rat_def: "divide q r = q * inverse (r::rat)" -lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)" +lemma divide_rat [simp]: "divide (Fract a b) (Fract c d) = Fract (a * d) (b * c)" by (simp add: divide_rat_def) instance proof @@ -191,7 +191,7 @@ by transfer simp { assume "q \ 0" thus "inverse q * q = 1" by transfer simp } - show "q / r = q * inverse r" + show "divide q r = q * inverse r" by (fact divide_rat_def) show "inverse 0 = (0::rat)" by transfer simp @@ -1158,8 +1158,8 @@ val {mant = i, exp = n} = Lexicon.read_float str; val exp = Syntax.const @{const_syntax Power.power}; val ten = Numeral.mk_number_syntax 10; - val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n;; - in Syntax.const @{const_syntax divide} $ Numeral.mk_number_syntax i $ exp10 end; + val exp10 = if n = 1 then ten else exp $ ten $ Numeral.mk_number_syntax n; + in Syntax.const @{const_syntax Fields.inverse_divide} $ Numeral.mk_number_syntax i $ exp10 end; fun float_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = c $ float_tr [t] $ u | float_tr [t as Const (str, _)] = mk_frac str diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Real.thy --- a/src/HOL/Real.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Real.thy Mon Jun 01 18:59:21 2015 +0200 @@ -438,7 +438,7 @@ "x - y = (x::real) + - y" definition - "x / y = (x::real) * inverse y" + "divide x y = (x::real) * inverse y" lemma add_Real: assumes X: "cauchy X" and Y: "cauchy Y" @@ -501,7 +501,7 @@ apply (rule_tac x=k in exI, clarify) apply (drule_tac x=n in spec, simp) done - show "a / b = a * inverse b" + show "divide a b = a * inverse b" by (rule divide_real_def) show "inverse (0::real) = 0" by transfer (simp add: realrel_def) diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Rings.thy --- a/src/HOL/Rings.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Rings.thy Mon Jun 01 18:59:21 2015 +0200 @@ -415,6 +415,33 @@ end +class divide = + fixes divide :: "'a \ 'a \ 'a" + +setup {* Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a \ 'a \ 'a"}) *} + +context semiring +begin + +lemma [field_simps]: + shows distrib_left_NO_MATCH: "NO_MATCH (divide x y) a \ a * (b + c) = a * b + a * c" + and distrib_right_NO_MATCH: "NO_MATCH (divide x y) c \ (a + b) * c = a * c + b * c" + by (rule distrib_left distrib_right)+ + +end + +context ring +begin + +lemma [field_simps]: + shows left_diff_distrib_NO_MATCH: "NO_MATCH (divide x y) c \ (a - b) * c = a * c - b * c" + and right_diff_distrib_NO_MATCH: "NO_MATCH (divide x y) a \ a * (b - c) = a * b - a * c" + by (rule left_diff_distrib right_diff_distrib)+ + +end + +setup {* Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a::divide \ 'a \ 'a"}) *} + class semiring_no_zero_divisors = semiring_0 + assumes no_zero_divisors: "a \ 0 \ b \ 0 \ a * b \ 0" begin diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/SMT_Examples/SMT_Examples.certs --- a/src/HOL/SMT_Examples/SMT_Examples.certs Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/SMT_Examples/SMT_Examples.certs Mon Jun 01 18:59:21 2015 +0200 @@ -4415,6 +4415,1608 @@ (let ((@x128 (asserted $x127))) (unit-resolution @x128 @x546 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) +0f7f4a10f8a84029fd3a6efddc4408fa429b0cda 113 0 +unsat +((set-logic ) +(proof +(let ((?x228 (mod x$ 2))) +(let ((?x262 (* (- 1) ?x228))) +(let ((?x31 (mod$ x$ 2))) +(let ((?x263 (+ ?x31 ?x262))) +(let (($x280 (>= ?x263 0))) +(let (($x264 (= ?x263 0))) +(let (($x205 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x136 (mod ?v0 ?v1))) +(let ((?x93 (* (- 1) ?v1))) +(let ((?x90 (* (- 1) ?v0))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let (($x111 (<= ?v1 0))) +(let ((?x170 (ite $x111 ?x150 ?x136))) +(let (($x78 (= ?v1 0))) +(let ((?x175 (ite $x78 ?v0 ?x170))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x175))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x181 (forall ((?v0 Int) (?v1 Int) )(let ((?x136 (mod ?v0 ?v1))) +(let ((?x93 (* (- 1) ?v1))) +(let ((?x90 (* (- 1) ?v0))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let (($x111 (<= ?v1 0))) +(let ((?x170 (ite $x111 ?x150 ?x136))) +(let (($x78 (= ?v1 0))) +(let ((?x175 (ite $x78 ?v0 ?x170))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x175)))))))))))) +)) +(let ((?x136 (mod ?1 ?0))) +(let ((?x93 (* (- 1) ?0))) +(let ((?x90 (* (- 1) ?1))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let (($x111 (<= ?0 0))) +(let ((?x170 (ite $x111 ?x150 ?x136))) +(let (($x78 (= ?0 0))) +(let ((?x175 (ite $x78 ?1 ?x170))) +(let ((?x135 (mod$ ?1 ?0))) +(let (($x178 (= ?x135 ?x175))) +(let (($x142 (forall ((?v0 Int) (?v1 Int) )(let (($x78 (= ?v1 0))) +(let ((?x140 (ite $x78 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x140))))) +)) +(let (($x164 (forall ((?v0 Int) (?v1 Int) )(let ((?x93 (* (- 1) ?v1))) +(let ((?x90 (* (- 1) ?v0))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let ((?x136 (mod ?v0 ?v1))) +(let (($x79 (< 0 ?v1))) +(let ((?x155 (ite $x79 ?x136 ?x150))) +(let (($x78 (= ?v1 0))) +(let ((?x158 (ite $x78 ?v0 ?x155))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x158)))))))))))) +)) +(let ((@x169 (monotonicity (rewrite (= (< 0 ?0) (not $x111))) (= (ite (< 0 ?0) ?x136 ?x150) (ite (not $x111) ?x136 ?x150))))) +(let ((@x174 (trans @x169 (rewrite (= (ite (not $x111) ?x136 ?x150) ?x170)) (= (ite (< 0 ?0) ?x136 ?x150) ?x170)))) +(let ((@x177 (monotonicity @x174 (= (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150)) ?x175)))) +(let ((@x180 (monotonicity @x177 (= (= ?x135 (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150))) $x178)))) +(let (($x79 (< 0 ?0))) +(let ((?x155 (ite $x79 ?x136 ?x150))) +(let ((?x158 (ite $x78 ?1 ?x155))) +(let (($x161 (= ?x135 ?x158))) +(let (($x162 (= (= ?x135 (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))))) $x161))) +(let ((@x146 (monotonicity (rewrite (= (- ?1) ?x90)) (rewrite (= (- ?0) ?x93)) (= (mod (- ?1) (- ?0)) ?x144)))) +(let ((@x154 (trans (monotonicity @x146 (= (- (mod (- ?1) (- ?0))) (- ?x144))) (rewrite (= (- ?x144) ?x150)) (= (- (mod (- ?1) (- ?0))) ?x150)))) +(let ((@x157 (monotonicity @x154 (= (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))) ?x155)))) +(let ((@x160 (monotonicity @x157 (= (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0))))) ?x158)))) +(let ((@x185 (trans (quant-intro (monotonicity @x160 $x162) (= $x142 $x164)) (quant-intro @x180 (= $x164 $x181)) (= $x142 $x181)))) +(let ((@x196 (mp~ (mp (asserted $x142) @x185 $x181) (nnf-pos (refl (~ $x178 $x178)) (~ $x181 $x181)) $x181))) +(let ((@x210 (mp @x196 (quant-intro (refl (= $x178 $x178)) (= $x181 $x205)) $x205))) +(let (($x270 (or (not $x205) $x264))) +(let ((?x225 (* (- 1) 2))) +(let ((?x224 (* (- 1) x$))) +(let ((?x226 (mod ?x224 ?x225))) +(let ((?x227 (* (- 1) ?x226))) +(let (($x223 (<= 2 0))) +(let ((?x229 (ite $x223 ?x227 ?x228))) +(let (($x222 (= 2 0))) +(let ((?x230 (ite $x222 x$ ?x229))) +(let (($x231 (= ?x31 ?x230))) +(let ((@x244 (monotonicity (monotonicity (rewrite (= ?x225 (- 2))) (= ?x226 (mod ?x224 (- 2)))) (= ?x227 (* (- 1) (mod ?x224 (- 2))))))) +(let ((@x247 (monotonicity (rewrite (= $x223 false)) @x244 (= ?x229 (ite false (* (- 1) (mod ?x224 (- 2))) ?x228))))) +(let ((@x251 (trans @x247 (rewrite (= (ite false (* (- 1) (mod ?x224 (- 2))) ?x228) ?x228)) (= ?x229 ?x228)))) +(let ((@x254 (monotonicity (rewrite (= $x222 false)) @x251 (= ?x230 (ite false x$ ?x228))))) +(let ((@x261 (monotonicity (trans @x254 (rewrite (= (ite false x$ ?x228) ?x228)) (= ?x230 ?x228)) (= $x231 (= ?x31 ?x228))))) +(let ((@x274 (monotonicity (trans @x261 (rewrite (= (= ?x31 ?x228) $x264)) (= $x231 $x264)) (= (or (not $x205) $x231) $x270)))) +(let ((@x277 (trans @x274 (rewrite (= $x270 $x270)) (= (or (not $x205) $x231) $x270)))) +(let ((@x278 (mp ((_ quant-inst x$ 2) (or (not $x205) $x231)) @x277 $x270))) +(let ((@x337 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280))) +(let (($x305 (>= ?x228 0))) +(let (($x64 (>= ?x31 0))) +(let (($x67 (not $x64))) +(let (($x36 (not (<= (+ x$ 1) (+ x$ (+ (* 2 ?x31) 1)))))) +(let ((@x69 (monotonicity (rewrite (= (>= (* 2 ?x31) 0) $x64)) (= (not (>= (* 2 ?x31) 0)) $x67)))) +(let ((?x32 (* 2 ?x31))) +(let ((?x47 (+ 1 x$ ?x32))) +(let (($x52 (<= (+ 1 x$) ?x47))) +(let (($x55 (not $x52))) +(let ((@x63 (monotonicity (rewrite (= $x52 (>= ?x32 0))) (= $x55 (not (>= ?x32 0)))))) +(let ((@x46 (monotonicity (rewrite (= (+ ?x32 1) (+ 1 ?x32))) (= (+ x$ (+ ?x32 1)) (+ x$ (+ 1 ?x32)))))) +(let ((@x51 (trans @x46 (rewrite (= (+ x$ (+ 1 ?x32)) ?x47)) (= (+ x$ (+ ?x32 1)) ?x47)))) +(let ((@x54 (monotonicity (rewrite (= (+ x$ 1) (+ 1 x$))) @x51 (= (<= (+ x$ 1) (+ x$ (+ ?x32 1))) $x52)))) +(let ((@x73 (trans (monotonicity @x54 (= $x36 $x55)) (trans @x63 @x69 (= $x55 $x67)) (= $x36 $x67)))) +(let ((@x74 (mp (asserted $x36) @x73 $x67))) +((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x337 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +fa5abc269019f00f5093218b287856c2a08c0adf 112 0 +unsat +((set-logic ) +(proof +(let ((?x224 (mod x$ 2))) +(let (($x318 (>= ?x224 2))) +(let (($x319 (not $x318))) +(let ((?x258 (* (- 1) ?x224))) +(let ((?x29 (mod$ x$ 2))) +(let ((?x259 (+ ?x29 ?x258))) +(let (($x275 (<= ?x259 0))) +(let (($x260 (= ?x259 0))) +(let (($x201 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x132 (mod ?v0 ?v1))) +(let ((?x89 (* (- 1) ?v1))) +(let ((?x86 (* (- 1) ?v0))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let (($x107 (<= ?v1 0))) +(let ((?x166 (ite $x107 ?x146 ?x132))) +(let (($x74 (= ?v1 0))) +(let ((?x171 (ite $x74 ?v0 ?x166))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x171))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x177 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod ?v0 ?v1))) +(let ((?x89 (* (- 1) ?v1))) +(let ((?x86 (* (- 1) ?v0))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let (($x107 (<= ?v1 0))) +(let ((?x166 (ite $x107 ?x146 ?x132))) +(let (($x74 (= ?v1 0))) +(let ((?x171 (ite $x74 ?v0 ?x166))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x171)))))))))))) +)) +(let ((?x132 (mod ?1 ?0))) +(let ((?x89 (* (- 1) ?0))) +(let ((?x86 (* (- 1) ?1))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let (($x107 (<= ?0 0))) +(let ((?x166 (ite $x107 ?x146 ?x132))) +(let (($x74 (= ?0 0))) +(let ((?x171 (ite $x74 ?1 ?x166))) +(let ((?x131 (mod$ ?1 ?0))) +(let (($x174 (= ?x131 ?x171))) +(let (($x138 (forall ((?v0 Int) (?v1 Int) )(let (($x74 (= ?v1 0))) +(let ((?x136 (ite $x74 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x136))))) +)) +(let (($x160 (forall ((?v0 Int) (?v1 Int) )(let ((?x89 (* (- 1) ?v1))) +(let ((?x86 (* (- 1) ?v0))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let ((?x132 (mod ?v0 ?v1))) +(let (($x75 (< 0 ?v1))) +(let ((?x151 (ite $x75 ?x132 ?x146))) +(let (($x74 (= ?v1 0))) +(let ((?x154 (ite $x74 ?v0 ?x151))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x154)))))))))))) +)) +(let ((@x165 (monotonicity (rewrite (= (< 0 ?0) (not $x107))) (= (ite (< 0 ?0) ?x132 ?x146) (ite (not $x107) ?x132 ?x146))))) +(let ((@x170 (trans @x165 (rewrite (= (ite (not $x107) ?x132 ?x146) ?x166)) (= (ite (< 0 ?0) ?x132 ?x146) ?x166)))) +(let ((@x173 (monotonicity @x170 (= (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146)) ?x171)))) +(let ((@x176 (monotonicity @x173 (= (= ?x131 (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146))) $x174)))) +(let (($x75 (< 0 ?0))) +(let ((?x151 (ite $x75 ?x132 ?x146))) +(let ((?x154 (ite $x74 ?1 ?x151))) +(let (($x157 (= ?x131 ?x154))) +(let (($x158 (= (= ?x131 (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))))) $x157))) +(let ((@x142 (monotonicity (rewrite (= (- ?1) ?x86)) (rewrite (= (- ?0) ?x89)) (= (mod (- ?1) (- ?0)) ?x140)))) +(let ((@x150 (trans (monotonicity @x142 (= (- (mod (- ?1) (- ?0))) (- ?x140))) (rewrite (= (- ?x140) ?x146)) (= (- (mod (- ?1) (- ?0))) ?x146)))) +(let ((@x153 (monotonicity @x150 (= (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))) ?x151)))) +(let ((@x156 (monotonicity @x153 (= (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0))))) ?x154)))) +(let ((@x181 (trans (quant-intro (monotonicity @x156 $x158) (= $x138 $x160)) (quant-intro @x176 (= $x160 $x177)) (= $x138 $x177)))) +(let ((@x192 (mp~ (mp (asserted $x138) @x181 $x177) (nnf-pos (refl (~ $x174 $x174)) (~ $x177 $x177)) $x177))) +(let ((@x206 (mp @x192 (quant-intro (refl (= $x174 $x174)) (= $x177 $x201)) $x201))) +(let (($x266 (or (not $x201) $x260))) +(let ((?x221 (* (- 1) 2))) +(let ((?x220 (* (- 1) x$))) +(let ((?x222 (mod ?x220 ?x221))) +(let ((?x223 (* (- 1) ?x222))) +(let (($x219 (<= 2 0))) +(let ((?x225 (ite $x219 ?x223 ?x224))) +(let (($x218 (= 2 0))) +(let ((?x226 (ite $x218 x$ ?x225))) +(let (($x227 (= ?x29 ?x226))) +(let ((@x240 (monotonicity (monotonicity (rewrite (= ?x221 (- 2))) (= ?x222 (mod ?x220 (- 2)))) (= ?x223 (* (- 1) (mod ?x220 (- 2))))))) +(let ((@x243 (monotonicity (rewrite (= $x219 false)) @x240 (= ?x225 (ite false (* (- 1) (mod ?x220 (- 2))) ?x224))))) +(let ((@x247 (trans @x243 (rewrite (= (ite false (* (- 1) (mod ?x220 (- 2))) ?x224) ?x224)) (= ?x225 ?x224)))) +(let ((@x250 (monotonicity (rewrite (= $x218 false)) @x247 (= ?x226 (ite false x$ ?x224))))) +(let ((@x257 (monotonicity (trans @x250 (rewrite (= (ite false x$ ?x224) ?x224)) (= ?x226 ?x224)) (= $x227 (= ?x29 ?x224))))) +(let ((@x270 (monotonicity (trans @x257 (rewrite (= (= ?x29 ?x224) $x260)) (= $x227 $x260)) (= (or (not $x201) $x227) $x266)))) +(let ((@x273 (trans @x270 (rewrite (= $x266 $x266)) (= (or (not $x201) $x227) $x266)))) +(let ((@x274 (mp ((_ quant-inst x$ 2) (or (not $x201) $x227)) @x273 $x266))) +(let ((@x336 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275))) +(let (($x63 (>= ?x29 2))) +(let ((?x37 (* 2 ?x29))) +(let (($x56 (>= ?x37 3))) +(let (($x46 (< (+ x$ ?x37) (+ 3 x$)))) +(let (($x49 (not $x46))) +(let ((@x58 (monotonicity (rewrite (= $x46 (not $x56))) (= $x49 (not (not $x56)))))) +(let ((@x67 (trans (trans @x58 (rewrite (= (not (not $x56)) $x56)) (= $x49 $x56)) (rewrite (= $x56 $x63)) (= $x49 $x63)))) +(let ((@x42 (monotonicity (rewrite (= (+ ?x29 ?x29) ?x37)) (= (+ x$ (+ ?x29 ?x29)) (+ x$ ?x37))))) +(let ((@x48 (monotonicity @x42 (rewrite (= (+ x$ 3) (+ 3 x$))) (= (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)) $x46)))) +(let ((@x51 (monotonicity @x48 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x49)))) +(let ((@x69 (trans @x51 @x67 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x63)))) +(let ((@x70 (mp (asserted (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)))) @x69 $x63))) +((_ th-lemma arith farkas -1 1 1) @x70 @x336 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +1880f0ed1cb3d1cfa006dff17f1b5553ce3a5158 236 0 +unsat +((set-logic ) +(proof +(let ((?x410 (div n$ 2))) +(let ((?x704 (* (- 1) ?x410))) +(let ((?x381 (div n$ 4))) +(let ((?x601 (* (- 2) ?x381))) +(let ((?x329 (mod n$ 4))) +(let ((?x363 (* (- 1) ?x329))) +(let ((?x35 (mod$ n$ 4))) +(let ((?x705 (+ n$ ?x35 ?x363 ?x601 ?x704))) +(let (($x706 (>= ?x705 2))) +(let ((?x39 (mod$ n$ 2))) +(let (($x515 (>= ?x39 1))) +(let (($x725 (not $x515))) +(let (($x514 (<= ?x39 1))) +(let ((?x519 (mod n$ 2))) +(let ((?x534 (* (- 1) ?x519))) +(let ((?x535 (+ ?x39 ?x534))) +(let (($x408 (<= ?x535 0))) +(let (($x490 (= ?x535 0))) +(let (($x191 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x108 (mod ?v0 ?v1))) +(let ((?x65 (* (- 1) ?v1))) +(let ((?x62 (* (- 1) ?v0))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let (($x83 (<= ?v1 0))) +(let ((?x142 (ite $x83 ?x122 ?x108))) +(let (($x50 (= ?v1 0))) +(let ((?x147 (ite $x50 ?v0 ?x142))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x147))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x153 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod ?v0 ?v1))) +(let ((?x65 (* (- 1) ?v1))) +(let ((?x62 (* (- 1) ?v0))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let (($x83 (<= ?v1 0))) +(let ((?x142 (ite $x83 ?x122 ?x108))) +(let (($x50 (= ?v1 0))) +(let ((?x147 (ite $x50 ?v0 ?x142))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x147)))))))))))) +)) +(let ((?x108 (mod ?1 ?0))) +(let ((?x65 (* (- 1) ?0))) +(let ((?x62 (* (- 1) ?1))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let (($x83 (<= ?0 0))) +(let ((?x142 (ite $x83 ?x122 ?x108))) +(let (($x50 (= ?0 0))) +(let ((?x147 (ite $x50 ?1 ?x142))) +(let ((?x107 (mod$ ?1 ?0))) +(let (($x150 (= ?x107 ?x147))) +(let (($x114 (forall ((?v0 Int) (?v1 Int) )(let (($x50 (= ?v1 0))) +(let ((?x112 (ite $x50 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x112))))) +)) +(let (($x136 (forall ((?v0 Int) (?v1 Int) )(let ((?x65 (* (- 1) ?v1))) +(let ((?x62 (* (- 1) ?v0))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let ((?x108 (mod ?v0 ?v1))) +(let (($x51 (< 0 ?v1))) +(let ((?x127 (ite $x51 ?x108 ?x122))) +(let (($x50 (= ?v1 0))) +(let ((?x130 (ite $x50 ?v0 ?x127))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x130)))))))))))) +)) +(let ((@x141 (monotonicity (rewrite (= (< 0 ?0) (not $x83))) (= (ite (< 0 ?0) ?x108 ?x122) (ite (not $x83) ?x108 ?x122))))) +(let ((@x146 (trans @x141 (rewrite (= (ite (not $x83) ?x108 ?x122) ?x142)) (= (ite (< 0 ?0) ?x108 ?x122) ?x142)))) +(let ((@x149 (monotonicity @x146 (= (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122)) ?x147)))) +(let ((@x152 (monotonicity @x149 (= (= ?x107 (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122))) $x150)))) +(let (($x51 (< 0 ?0))) +(let ((?x127 (ite $x51 ?x108 ?x122))) +(let ((?x130 (ite $x50 ?1 ?x127))) +(let (($x133 (= ?x107 ?x130))) +(let (($x134 (= (= ?x107 (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))))) $x133))) +(let ((@x118 (monotonicity (rewrite (= (- ?1) ?x62)) (rewrite (= (- ?0) ?x65)) (= (mod (- ?1) (- ?0)) ?x116)))) +(let ((@x126 (trans (monotonicity @x118 (= (- (mod (- ?1) (- ?0))) (- ?x116))) (rewrite (= (- ?x116) ?x122)) (= (- (mod (- ?1) (- ?0))) ?x122)))) +(let ((@x129 (monotonicity @x126 (= (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))) ?x127)))) +(let ((@x132 (monotonicity @x129 (= (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0))))) ?x130)))) +(let ((@x157 (trans (quant-intro (monotonicity @x132 $x134) (= $x114 $x136)) (quant-intro @x152 (= $x136 $x153)) (= $x114 $x153)))) +(let ((@x168 (mp~ (mp (asserted $x114) @x157 $x153) (nnf-pos (refl (~ $x150 $x150)) (~ $x153 $x153)) $x153))) +(let ((@x196 (mp @x168 (quant-intro (refl (= $x150 $x150)) (= $x153 $x191)) $x191))) +(let (($x260 (not $x191))) +(let (($x541 (or $x260 $x490))) +(let ((?x211 (* (- 1) 2))) +(let ((?x222 (* (- 1) n$))) +(let ((?x517 (mod ?x222 ?x211))) +(let ((?x518 (* (- 1) ?x517))) +(let (($x209 (<= 2 0))) +(let ((?x520 (ite $x209 ?x518 ?x519))) +(let (($x208 (= 2 0))) +(let ((?x521 (ite $x208 n$ ?x520))) +(let (($x485 (= ?x39 ?x521))) +(let ((@x593 (monotonicity (monotonicity (rewrite (= ?x211 (- 2))) (= ?x517 (mod ?x222 (- 2)))) (= ?x518 (* (- 1) (mod ?x222 (- 2))))))) +(let ((@x221 (rewrite (= $x209 false)))) +(let ((@x596 (monotonicity @x221 @x593 (= ?x520 (ite false (* (- 1) (mod ?x222 (- 2))) ?x519))))) +(let ((@x599 (trans @x596 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 2))) ?x519) ?x519)) (= ?x520 ?x519)))) +(let ((@x219 (rewrite (= $x208 false)))) +(let ((@x487 (trans (monotonicity @x219 @x599 (= ?x521 (ite false n$ ?x519))) (rewrite (= (ite false n$ ?x519) ?x519)) (= ?x521 ?x519)))) +(let ((@x538 (trans (monotonicity @x487 (= $x485 (= ?x39 ?x519))) (rewrite (= (= ?x39 ?x519) $x490)) (= $x485 $x490)))) +(let ((@x406 (trans (monotonicity @x538 (= (or $x260 $x485) $x541)) (rewrite (= $x541 $x541)) (= (or $x260 $x485) $x541)))) +(let ((@x407 (mp ((_ quant-inst n$ 2) (or $x260 $x485)) @x406 $x541))) +(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x408)) (unit-resolution @x407 @x196 $x490) $x408))) +(let (($x303 (>= ?x519 2))) +(let (($x304 (not $x303))) +(let ((@x26 (true-axiom true))) +(let ((@x722 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x514 $x303 (not $x408))) (unit-resolution ((_ th-lemma arith) (or false $x304)) @x26 $x304) @x715 $x514))) +(let (($x41 (= ?x39 1))) +(let (($x169 (not $x41))) +(let ((?x42 (mod$ m$ 2))) +(let (($x43 (= ?x42 1))) +(let ((?x29 (+ n$ m$))) +(let ((?x214 (mod ?x29 2))) +(let ((?x253 (* (- 1) ?x214))) +(let ((?x31 (mod$ ?x29 2))) +(let ((?x603 (+ n$ m$ ?x31 ?x35 ?x253 (* (- 1) (div ?x29 2)) ?x363 ?x601 (* (- 1) (div m$ 2))))) +(let (($x604 (>= ?x603 2))) +(let (($x523 (>= ?x42 1))) +(let (($x609 (not $x523))) +(let (($x522 (<= ?x42 1))) +(let ((?x439 (mod m$ 2))) +(let ((?x466 (* (- 1) ?x439))) +(let ((?x467 (+ ?x42 ?x466))) +(let (($x482 (<= ?x467 0))) +(let (($x468 (= ?x467 0))) +(let (($x473 (or $x260 $x468))) +(let ((?x440 (ite $x209 (* (- 1) (mod (* (- 1) m$) ?x211)) ?x439))) +(let ((?x441 (ite $x208 m$ ?x440))) +(let (($x442 (= ?x42 ?x441))) +(let ((@x453 (rewrite (= (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439) ?x439)))) +(let (($x447 (= (* (- 1) (mod (* (- 1) m$) ?x211)) (* (- 1) (mod (* (- 1) m$) (- 2)))))) +(let ((@x229 (rewrite (= ?x211 (- 2))))) +(let ((@x445 (monotonicity @x229 (= (mod (* (- 1) m$) ?x211) (mod (* (- 1) m$) (- 2)))))) +(let ((@x451 (monotonicity @x221 (monotonicity @x445 $x447) (= ?x440 (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439))))) +(let ((@x458 (monotonicity @x219 (trans @x451 @x453 (= ?x440 ?x439)) (= ?x441 (ite false m$ ?x439))))) +(let ((@x465 (monotonicity (trans @x458 (rewrite (= (ite false m$ ?x439) ?x439)) (= ?x441 ?x439)) (= $x442 (= ?x42 ?x439))))) +(let ((@x477 (monotonicity (trans @x465 (rewrite (= (= ?x42 ?x439) $x468)) (= $x442 $x468)) (= (or $x260 $x442) $x473)))) +(let ((@x481 (mp ((_ quant-inst m$ 2) (or $x260 $x442)) (trans @x477 (rewrite (= $x473 $x473)) (= (or $x260 $x442) $x473)) $x473))) +(let ((@x277 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) $x482)) (unit-resolution @x481 @x196 $x468) $x482))) +(let ((@x386 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x439 2)))) @x26 (not (>= ?x439 2))))) +(let ((@x384 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x522 (>= ?x439 2) (not $x482))) @x386 @x277 $x522))) +(let ((@x564 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x43 (not $x522) $x609)) (hypothesis (not $x43)) (or (not $x522) $x609)))) +(let ((?x272 (div ?x29 2))) +(let ((?x288 (* (- 2) ?x272))) +(let ((?x289 (+ n$ m$ ?x253 ?x288))) +(let (($x294 (<= ?x289 0))) +(let (($x287 (= ?x289 0))) +(let ((@x617 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x294)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x294))) +(let (($x433 (<= ?x31 0))) +(let (($x32 (= ?x31 0))) +(let ((@x33 (asserted $x32))) +(let ((?x254 (+ ?x31 ?x253))) +(let (($x270 (<= ?x254 0))) +(let (($x255 (= ?x254 0))) +(let (($x261 (or $x260 $x255))) +(let ((?x215 (ite $x209 (* (- 1) (mod (* (- 1) ?x29) ?x211)) ?x214))) +(let ((?x216 (ite $x208 ?x29 ?x215))) +(let (($x217 (= ?x31 ?x216))) +(let (($x239 (= (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214) ?x214))) +(let (($x237 (= ?x215 (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214)))) +(let (($x234 (= (* (- 1) (mod (* (- 1) ?x29) ?x211)) (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2)))))) +(let ((@x232 (monotonicity (rewrite (= (* (- 1) ?x29) (+ ?x222 (* (- 1) m$)))) @x229 (= (mod (* (- 1) ?x29) ?x211) (mod (+ ?x222 (* (- 1) m$)) (- 2)))))) +(let ((@x242 (trans (monotonicity @x221 (monotonicity @x232 $x234) $x237) (rewrite $x239) (= ?x215 ?x214)))) +(let ((@x249 (trans (monotonicity @x219 @x242 (= ?x216 (ite false ?x29 ?x214))) (rewrite (= (ite false ?x29 ?x214) ?x214)) (= ?x216 ?x214)))) +(let ((@x259 (trans (monotonicity @x249 (= $x217 (= ?x31 ?x214))) (rewrite (= (= ?x31 ?x214) $x255)) (= $x217 $x255)))) +(let ((@x268 (trans (monotonicity @x259 (= (or $x260 $x217) $x261)) (rewrite (= $x261 $x261)) (= (or $x260 $x217) $x261)))) +(let ((@x269 (mp ((_ quant-inst (+ n$ m$) 2) (or $x260 $x217)) @x268 $x261))) +(let ((@x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x270)) (unit-resolution @x269 @x196 $x255) $x270))) +(let ((?x498 (+ m$ ?x466 (* (- 2) (div m$ 2))))) +(let (($x496 (= ?x498 0))) +(let ((@x633 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (<= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (<= ?x498 0)))) +(let ((?x397 (* (- 4) ?x381))) +(let ((?x398 (+ n$ ?x363 ?x397))) +(let (($x403 (<= ?x398 0))) +(let (($x396 (= ?x398 0))) +(let ((@x640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x403)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x403))) +(let ((?x364 (+ ?x35 ?x363))) +(let (($x379 (<= ?x364 0))) +(let (($x365 (= ?x364 0))) +(let (($x370 (or $x260 $x365))) +(let ((?x330 (ite (<= 4 0) (* (- 1) (mod ?x222 (* (- 1) 4))) ?x329))) +(let ((?x331 (ite (= 4 0) n$ ?x330))) +(let (($x332 (= ?x35 ?x331))) +(let ((@x342 (monotonicity (rewrite (= (* (- 1) 4) (- 4))) (= (mod ?x222 (* (- 1) 4)) (mod ?x222 (- 4)))))) +(let ((@x345 (monotonicity @x342 (= (* (- 1) (mod ?x222 (* (- 1) 4))) (* (- 1) (mod ?x222 (- 4))))))) +(let ((@x348 (monotonicity (rewrite (= (<= 4 0) false)) @x345 (= ?x330 (ite false (* (- 1) (mod ?x222 (- 4))) ?x329))))) +(let ((@x352 (trans @x348 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 4))) ?x329) ?x329)) (= ?x330 ?x329)))) +(let ((@x355 (monotonicity (rewrite (= (= 4 0) false)) @x352 (= ?x331 (ite false n$ ?x329))))) +(let ((@x362 (monotonicity (trans @x355 (rewrite (= (ite false n$ ?x329) ?x329)) (= ?x331 ?x329)) (= $x332 (= ?x35 ?x329))))) +(let ((@x374 (monotonicity (trans @x362 (rewrite (= (= ?x35 ?x329) $x365)) (= $x332 $x365)) (= (or $x260 $x332) $x370)))) +(let ((@x378 (mp ((_ quant-inst n$ 4) (or $x260 $x332)) (trans @x374 (rewrite (= $x370 $x370)) (= (or $x260 $x332) $x370)) $x370))) +(let ((@x645 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x379)) (unit-resolution @x378 @x196 $x365) $x379))) +(let (($x435 (<= ?x35 3))) +(let (($x37 (= ?x35 3))) +(let ((@x38 (asserted $x37))) +(let ((@x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) (>= ?x467 0))) (unit-resolution @x481 @x196 $x468) (>= ?x467 0)))) +(let ((@x656 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1 1 1 1) @x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x604) @x645 @x640 @x633 @x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x433)) @x33 $x433) @x617 (hypothesis $x609) false))) +(let ((@x565 (unit-resolution (lemma @x656 (or (not $x604) $x523)) (unit-resolution @x564 @x384 $x609) (not $x604)))) +(let (($x295 (>= ?x289 0))) +(let ((@x566 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x295)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x295))) +(let (($x434 (>= ?x31 0))) +(let (($x271 (>= ?x254 0))) +(let ((@x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x271)) (unit-resolution @x269 @x196 $x255) $x271))) +(let ((@x537 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (>= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (>= ?x498 0)))) +(let ((@x549 (unit-resolution ((_ th-lemma arith) (or false (>= ?x439 0))) @x26 (>= ?x439 0)))) +(let (($x404 (>= ?x398 0))) +(let ((@x552 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x404)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x404))) +(let (($x380 (>= ?x364 0))) +(let ((@x273 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x380)) (unit-resolution @x378 @x196 $x365) $x380))) +(let (($x436 (>= ?x35 3))) +(let ((@x545 ((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x273 @x552 @x549 @x537 @x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x434)) @x33 $x434) @x566 @x565 false))) +(let (($x171 (or $x169 (not $x43)))) +(let ((@x177 (monotonicity (rewrite (= (and $x41 $x43) (not $x171))) (= (not (and $x41 $x43)) (not (not $x171)))))) +(let ((@x181 (trans @x177 (rewrite (= (not (not $x171)) $x171)) (= (not (and $x41 $x43)) $x171)))) +(let ((@x182 (mp (asserted (not (and $x41 $x43))) @x181 $x171))) +(let ((@x729 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x41 (not $x514) $x725)) (unit-resolution @x182 (lemma @x545 $x43) $x169) (or (not $x514) $x725)))) +(let ((?x420 (* (- 2) ?x410))) +(let ((?x421 (+ n$ ?x420 ?x534))) +(let (($x426 (<= ?x421 0))) +(let (($x419 (= ?x421 0))) +(let ((@x737 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x426)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x426))) +(let (($x409 (>= ?x535 0))) +(let ((@x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x409)) (unit-resolution @x407 @x196 $x490) $x409))) +(let ((@x742 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1) @x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x706) @x640 @x737 @x645 (unit-resolution @x729 @x722 $x725) false))) +(let (($x427 (>= ?x421 0))) +(let ((@x584 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x427)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x427))) +(let (($x542 (>= ?x519 0))) +((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x552 (unit-resolution ((_ th-lemma arith) (or false $x542)) @x26 $x542) @x584 @x273 (lemma @x742 (not $x706)) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +f6a4c40290fd6742c0b08a1fe90b3664e90c2143 336 0 +unsat +((set-logic ) +(proof +(let ((?x99 (mod$ l$ 2))) +(let ((?x96 (map$ uu$ xs$))) +(let ((?x97 (eval_dioph$ ks$ ?x96))) +(let ((?x98 (mod$ ?x97 2))) +(let (($x100 (= ?x98 ?x99))) +(let ((?x93 (eval_dioph$ ks$ xs$))) +(let (($x95 (= ?x93 l$))) +(let ((?x110 (* (- 1) ?x97))) +(let ((?x111 (+ l$ ?x110))) +(let ((?x114 (divide$ ?x111 2))) +(let ((?x101 (map$ uua$ xs$))) +(let ((?x102 (eval_dioph$ ks$ ?x101))) +(let (($x117 (= ?x102 ?x114))) +(let (($x282 (not $x117))) +(let (($x281 (not $x100))) +(let (($x283 (or $x281 $x282))) +(let ((?x744 (div ?x93 2))) +(let ((?x970 (* (- 1) ?x744))) +(let ((?x699 (mod ?x93 2))) +(let ((?x726 (* (- 1) ?x699))) +(let ((?x516 (mod l$ 2))) +(let ((?x543 (* (- 1) ?x516))) +(let (($x972 (>= (+ l$ ?x99 ?x543 (* (- 1) (div l$ 2)) ?x726 ?x970) 1))) +(let ((?x369 (* (- 1) l$))) +(let ((?x693 (+ ?x93 ?x369))) +(let (($x695 (>= ?x693 0))) +(let (($x861 (not $x695))) +(let (($x694 (<= ?x693 0))) +(let ((?x686 (+ ?x102 (* (- 1) ?x114)))) +(let (($x687 (<= ?x686 0))) +(let (($x284 (not $x283))) +(let ((@x466 (hypothesis $x284))) +(let ((@x856 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x687)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x687))) +(let ((?x437 (+ l$ ?x110 (* (- 2) (div ?x111 2)) (* (- 1) (mod (+ l$ ?x97) 2))))) +(let (($x443 (>= ?x437 0))) +(let (($x434 (= ?x437 0))) +(let ((@x26 (true-axiom true))) +(let ((@x793 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) $x443)) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) $x443))) +(let ((?x501 (* (- 2) ?x102))) +(let ((?x502 (+ ?x93 ?x110 ?x501))) +(let (($x509 (<= ?x502 0))) +(let (($x503 (= ?x502 0))) +(let (($x304 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1)))))) +(= ?x83 0))) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :pattern ( (eval_dioph$ ?v0 (map$ uua$ ?v1)) ))) +)) +(let (($x85 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1)))))) +(= ?x83 0)))) +)) +(let ((?x45 (eval_dioph$ ?1 ?0))) +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?1 (map$ uu$ ?0))) (* (- 2) (eval_dioph$ ?1 (map$ uua$ ?0)))))) +(let (($x79 (= ?x83 0))) +(let (($x58 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1)))) +(let ((?x56 (+ (* (eval_dioph$ ?v0 (map$ uua$ ?v1)) 2) ?x48))) +(= ?x56 ?x45))))) +)) +(let (($x74 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x54 (eval_dioph$ ?v0 (map$ uua$ ?v1)))) +(let ((?x60 (* 2 ?x54))) +(let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1)))) +(let ((?x66 (+ ?x48 ?x60))) +(= ?x66 ?x45))))))) +)) +(let ((?x54 (eval_dioph$ ?1 (map$ uua$ ?0)))) +(let ((?x60 (* 2 ?x54))) +(let ((?x48 (eval_dioph$ ?1 (map$ uu$ ?0)))) +(let ((?x66 (+ ?x48 ?x60))) +(let (($x71 (= ?x66 ?x45))) +(let ((@x65 (monotonicity (rewrite (= (* ?x54 2) ?x60)) (= (+ (* ?x54 2) ?x48) (+ ?x60 ?x48))))) +(let ((@x70 (trans @x65 (rewrite (= (+ ?x60 ?x48) ?x66)) (= (+ (* ?x54 2) ?x48) ?x66)))) +(let ((@x76 (quant-intro (monotonicity @x70 (= (= (+ (* ?x54 2) ?x48) ?x45) $x71)) (= $x58 $x74)))) +(let ((@x89 (trans @x76 (quant-intro (rewrite (= $x71 $x79)) (= $x74 $x85)) (= $x58 $x85)))) +(let ((@x270 (mp~ (mp (asserted $x58) @x89 $x85) (nnf-pos (refl (~ $x79 $x79)) (~ $x85 $x85)) $x85))) +(let ((@x309 (mp @x270 (quant-intro (refl (= $x79 $x79)) (= $x85 $x304)) $x304))) +(let (($x507 (or (not $x304) $x503))) +(let ((@x508 ((_ quant-inst ks$ xs$) $x507))) +(let ((@x800 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x509)) (unit-resolution @x508 @x309 $x503) $x509))) +(let ((?x396 (+ ?x114 (* (- 1) (div ?x111 2))))) +(let (($x413 (<= ?x396 0))) +(let (($x397 (= ?x396 0))) +(let (($x311 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x145 (div ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x160 (div ?x154 ?x157))) +(let (($x175 (<= ?v1 0))) +(let ((?x182 (ite $x175 ?x160 ?x145))) +(let (($x143 (= ?v1 0))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 (ite $x143 0 ?x182)))))))))) :pattern ( (divide$ ?v0 ?v1) ))) +)) +(let (($x193 (forall ((?v0 Int) (?v1 Int) )(let ((?x145 (div ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x160 (div ?x154 ?x157))) +(let (($x175 (<= ?v1 0))) +(let ((?x182 (ite $x175 ?x160 ?x145))) +(let (($x143 (= ?v1 0))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 (ite $x143 0 ?x182))))))))))) +)) +(let ((?x145 (div ?1 ?0))) +(let ((?x157 (* (- 1) ?0))) +(let ((?x154 (* (- 1) ?1))) +(let ((?x160 (div ?x154 ?x157))) +(let (($x175 (<= ?0 0))) +(let ((?x182 (ite $x175 ?x160 ?x145))) +(let (($x143 (= ?0 0))) +(let ((?x141 (divide$ ?1 ?0))) +(let (($x190 (= ?x141 (ite $x143 0 ?x182)))) +(let (($x152 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0))) +(let ((?x150 (ite $x143 0 (ite (< 0 ?v1) (div ?v0 ?v1) (div (- ?v0) (- ?v1)))))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 ?x150))))) +)) +(let (($x172 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x160 (div ?x154 ?x157))) +(let ((?x145 (div ?v0 ?v1))) +(let (($x144 (< 0 ?v1))) +(let ((?x163 (ite $x144 ?x145 ?x160))) +(let (($x143 (= ?v1 0))) +(let ((?x166 (ite $x143 0 ?x163))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 ?x166))))))))))) +)) +(let (($x144 (< 0 ?0))) +(let ((?x163 (ite $x144 ?x145 ?x160))) +(let ((?x166 (ite $x143 0 ?x163))) +(let ((@x181 (monotonicity (rewrite (= $x144 (not $x175))) (= ?x163 (ite (not $x175) ?x145 ?x160))))) +(let ((@x186 (trans @x181 (rewrite (= (ite (not $x175) ?x145 ?x160) ?x182)) (= ?x163 ?x182)))) +(let ((@x192 (monotonicity (monotonicity @x186 (= ?x166 (ite $x143 0 ?x182))) (= (= ?x141 ?x166) $x190)))) +(let (($x169 (= ?x141 ?x166))) +(let (($x170 (= (= ?x141 (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0))))) $x169))) +(let ((@x162 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (div (- ?1) (- ?0)) ?x160)))) +(let ((@x168 (monotonicity (monotonicity @x162 (= (ite $x144 ?x145 (div (- ?1) (- ?0))) ?x163)) (= (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0)))) ?x166)))) +(let ((@x197 (trans (quant-intro (monotonicity @x168 $x170) (= $x152 $x172)) (quant-intro @x192 (= $x172 $x193)) (= $x152 $x193)))) +(let ((@x275 (mp~ (mp (asserted $x152) @x197 $x193) (nnf-pos (refl (~ $x190 $x190)) (~ $x193 $x193)) $x193))) +(let ((@x316 (mp @x275 (quant-intro (refl (= $x190 $x190)) (= $x193 $x311)) $x311))) +(let (($x403 (or (not $x311) $x397))) +(let ((?x361 (div ?x111 2))) +(let (($x357 (<= 2 0))) +(let ((?x362 (ite $x357 (div (* (- 1) ?x111) (* (- 1) 2)) ?x361))) +(let (($x356 (= 2 0))) +(let ((?x363 (ite $x356 0 ?x362))) +(let (($x364 (= ?x114 ?x363))) +(let ((@x374 (rewrite (= (* (- 1) 2) (- 2))))) +(let ((@x377 (monotonicity (rewrite (= (* (- 1) ?x111) (+ ?x369 ?x97))) @x374 (= (div (* (- 1) ?x111) (* (- 1) 2)) (div (+ ?x369 ?x97) (- 2)))))) +(let ((@x368 (rewrite (= $x357 false)))) +(let ((@x380 (monotonicity @x368 @x377 (= ?x362 (ite false (div (+ ?x369 ?x97) (- 2)) ?x361))))) +(let ((@x384 (trans @x380 (rewrite (= (ite false (div (+ ?x369 ?x97) (- 2)) ?x361) ?x361)) (= ?x362 ?x361)))) +(let ((@x366 (rewrite (= $x356 false)))) +(let ((@x391 (trans (monotonicity @x366 @x384 (= ?x363 (ite false 0 ?x361))) (rewrite (= (ite false 0 ?x361) ?x361)) (= ?x363 ?x361)))) +(let ((@x401 (trans (monotonicity @x391 (= $x364 (= ?x114 ?x361))) (rewrite (= (= ?x114 ?x361) $x397)) (= $x364 $x397)))) +(let ((@x410 (trans (monotonicity @x401 (= (or (not $x311) $x364) $x403)) (rewrite (= $x403 $x403)) (= (or (not $x311) $x364) $x403)))) +(let ((@x802 (unit-resolution (mp ((_ quant-inst (+ l$ ?x110) 2) (or (not $x311) $x364)) @x410 $x403) @x316 $x397))) +(let ((?x425 (mod (+ l$ ?x97) 2))) +(let (($x465 (>= ?x425 0))) +(let ((@x810 ((_ th-lemma arith farkas 1 -2 -2 -1 1 1) (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (hypothesis $x687) @x800 (hypothesis (not $x694)) @x793 false))) +(let (($x134 (not $x95))) +(let (($x290 (= $x95 $x283))) +(let ((@x289 (monotonicity (rewrite (= (and $x100 $x117) $x284)) (= (= $x134 (and $x100 $x117)) (= $x134 $x284))))) +(let ((@x294 (trans @x289 (rewrite (= (= $x134 $x284) $x290)) (= (= $x134 (and $x100 $x117)) $x290)))) +(let (($x120 (and $x100 $x117))) +(let (($x135 (= $x134 $x120))) +(let (($x107 (= $x95 (and $x100 (= ?x102 (divide$ (- l$ ?x97) 2)))))) +(let (($x108 (not $x107))) +(let ((@x116 (monotonicity (rewrite (= (- l$ ?x97) ?x111)) (= (divide$ (- l$ ?x97) 2) ?x114)))) +(let ((@x122 (monotonicity (monotonicity @x116 (= (= ?x102 (divide$ (- l$ ?x97) 2)) $x117)) (= (and $x100 (= ?x102 (divide$ (- l$ ?x97) 2))) $x120)))) +(let ((@x130 (trans (monotonicity @x122 (= $x107 (= $x95 $x120))) (rewrite (= (= $x95 $x120) (= $x95 $x120))) (= $x107 (= $x95 $x120))))) +(let ((@x139 (trans (monotonicity @x130 (= $x108 (not (= $x95 $x120)))) (rewrite (= (not (= $x95 $x120)) $x135)) (= $x108 $x135)))) +(let ((@x295 (mp (mp (asserted $x108) @x139 $x135) @x294 $x290))) +(let ((@x344 (unit-resolution (def-axiom (or $x134 $x283 (not $x290))) @x295 (or $x134 $x283)))) +(let ((@x898 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x95 (not $x694) $x861)) (unit-resolution @x344 @x466 $x134) (or (not $x694) $x861)))) +(let ((@x899 (unit-resolution @x898 (unit-resolution (lemma @x810 (or $x694 (not $x687))) @x856 $x694) $x861))) +(let ((?x544 (+ ?x99 ?x543))) +(let (($x561 (>= ?x544 0))) +(let (($x545 (= ?x544 0))) +(let (($x318 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x200 (mod ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?v1 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?v1 0))) +(let ((?x239 (ite $x143 ?v0 ?x234))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x239))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x245 (forall ((?v0 Int) (?v1 Int) )(let ((?x200 (mod ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?v1 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?v1 0))) +(let ((?x239 (ite $x143 ?v0 ?x234))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x239)))))))))))) +)) +(let ((?x200 (mod ?1 ?0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let ((?x239 (ite $x143 ?1 ?x234))) +(let ((?x199 (mod$ ?1 ?0))) +(let (($x242 (= ?x199 ?x239))) +(let (($x206 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0))) +(let ((?x204 (ite $x143 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x204))))) +)) +(let (($x228 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let ((?x200 (mod ?v0 ?v1))) +(let (($x144 (< 0 ?v1))) +(let ((?x219 (ite $x144 ?x200 ?x214))) +(let (($x143 (= ?v1 0))) +(let ((?x222 (ite $x143 ?v0 ?x219))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x222)))))))))))) +)) +(let ((@x233 (monotonicity (rewrite (= $x144 (not $x175))) (= (ite $x144 ?x200 ?x214) (ite (not $x175) ?x200 ?x214))))) +(let ((@x238 (trans @x233 (rewrite (= (ite (not $x175) ?x200 ?x214) ?x234)) (= (ite $x144 ?x200 ?x214) ?x234)))) +(let ((@x244 (monotonicity (monotonicity @x238 (= (ite $x143 ?1 (ite $x144 ?x200 ?x214)) ?x239)) (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 ?x214))) $x242)))) +(let ((?x219 (ite $x144 ?x200 ?x214))) +(let ((?x222 (ite $x143 ?1 ?x219))) +(let (($x225 (= ?x199 ?x222))) +(let (($x226 (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))))) $x225))) +(let ((@x210 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (mod (- ?1) (- ?0)) ?x208)))) +(let ((@x218 (trans (monotonicity @x210 (= (- (mod (- ?1) (- ?0))) (- ?x208))) (rewrite (= (- ?x208) ?x214)) (= (- (mod (- ?1) (- ?0))) ?x214)))) +(let ((@x221 (monotonicity @x218 (= (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))) ?x219)))) +(let ((@x224 (monotonicity @x221 (= (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0))))) ?x222)))) +(let ((@x249 (trans (quant-intro (monotonicity @x224 $x226) (= $x206 $x228)) (quant-intro @x244 (= $x228 $x245)) (= $x206 $x245)))) +(let ((@x280 (mp~ (mp (asserted $x206) @x249 $x245) (nnf-pos (refl (~ $x242 $x242)) (~ $x245 $x245)) $x245))) +(let ((@x323 (mp @x280 (quant-intro (refl (= $x242 $x242)) (= $x245 $x318)) $x318))) +(let (($x550 (not $x318))) +(let (($x551 (or $x550 $x545))) +(let ((?x359 (* (- 1) 2))) +(let ((?x511 (mod ?x369 ?x359))) +(let ((?x512 (* (- 1) ?x511))) +(let ((?x517 (ite $x357 ?x512 ?x516))) +(let ((?x518 (ite $x356 l$ ?x517))) +(let (($x519 (= ?x99 ?x518))) +(let ((@x525 (monotonicity (monotonicity @x374 (= ?x511 (mod ?x369 (- 2)))) (= ?x512 (* (- 1) (mod ?x369 (- 2))))))) +(let ((@x528 (monotonicity @x368 @x525 (= ?x517 (ite false (* (- 1) (mod ?x369 (- 2))) ?x516))))) +(let ((@x532 (trans @x528 (rewrite (= (ite false (* (- 1) (mod ?x369 (- 2))) ?x516) ?x516)) (= ?x517 ?x516)))) +(let ((@x539 (trans (monotonicity @x366 @x532 (= ?x518 (ite false l$ ?x516))) (rewrite (= (ite false l$ ?x516) ?x516)) (= ?x518 ?x516)))) +(let ((@x549 (trans (monotonicity @x539 (= $x519 (= ?x99 ?x516))) (rewrite (= (= ?x99 ?x516) $x545)) (= $x519 $x545)))) +(let ((@x558 (trans (monotonicity @x549 (= (or $x550 $x519) $x551)) (rewrite (= $x551 $x551)) (= (or $x550 $x519) $x551)))) +(let ((@x559 (mp ((_ quant-inst l$ 2) (or $x550 $x519)) @x558 $x551))) +(let ((@x902 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x561)) (unit-resolution @x559 @x323 $x545) $x561))) +(let ((?x757 (* (- 2) ?x744))) +(let ((?x758 (+ ?x93 ?x726 ?x757))) +(let (($x764 (>= ?x758 0))) +(let (($x756 (= ?x758 0))) +(let ((@x872 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x764)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x764))) +(let ((?x562 (div l$ 2))) +(let ((?x575 (* (- 2) ?x562))) +(let ((?x576 (+ l$ ?x543 ?x575))) +(let (($x582 (>= ?x576 0))) +(let (($x574 (= ?x576 0))) +(let ((@x880 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x582)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x582))) +(let ((?x504 (mod$ ?x93 2))) +(let ((?x727 (+ ?x504 ?x726))) +(let (($x728 (= ?x727 0))) +(let (($x733 (or $x550 $x728))) +(let ((?x696 (* (- 1) ?x93))) +(let ((?x697 (mod ?x696 ?x359))) +(let ((?x698 (* (- 1) ?x697))) +(let ((?x700 (ite $x357 ?x698 ?x699))) +(let ((?x701 (ite $x356 ?x93 ?x700))) +(let (($x702 (= ?x504 ?x701))) +(let ((@x708 (monotonicity (monotonicity @x374 (= ?x697 (mod ?x696 (- 2)))) (= ?x698 (* (- 1) (mod ?x696 (- 2))))))) +(let ((@x711 (monotonicity @x368 @x708 (= ?x700 (ite false (* (- 1) (mod ?x696 (- 2))) ?x699))))) +(let ((@x715 (trans @x711 (rewrite (= (ite false (* (- 1) (mod ?x696 (- 2))) ?x699) ?x699)) (= ?x700 ?x699)))) +(let ((@x722 (trans (monotonicity @x366 @x715 (= ?x701 (ite false ?x93 ?x699))) (rewrite (= (ite false ?x93 ?x699) ?x699)) (= ?x701 ?x699)))) +(let ((@x732 (trans (monotonicity @x722 (= $x702 (= ?x504 ?x699))) (rewrite (= (= ?x504 ?x699) $x728)) (= $x702 $x728)))) +(let ((@x740 (trans (monotonicity @x732 (= (or $x550 $x702) $x733)) (rewrite (= $x733 $x733)) (= (or $x550 $x702) $x733)))) +(let ((@x427 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (>= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (>= ?x727 0)))) +(let ((?x783 (* (- 1) ?x504))) +(let ((?x784 (+ ?x99 ?x783))) +(let (($x786 (>= ?x784 0))) +(let (($x782 (= ?x99 ?x504))) +(let (($x821 (= ?x98 ?x504))) +(let (($x505 (= ?x504 ?x98))) +(let (($x297 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ))) +)) +(let (($x51 (forall ((?v0 Int_list$) (?v1 Int_list$) )(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2))) +)) +(let (($x50 (= (mod$ ?x45 2) (mod$ ?x48 2)))) +(let ((@x265 (mp~ (asserted $x51) (nnf-pos (refl (~ $x50 $x50)) (~ $x51 $x51)) $x51))) +(let ((@x302 (mp @x265 (quant-intro (refl (= $x50 $x50)) (= $x51 $x297)) $x297))) +(let (($x514 (or (not $x297) $x505))) +(let ((@x515 ((_ quant-inst ks$ xs$) $x514))) +(let ((@x824 (symm (unit-resolution (def-axiom (or $x283 $x100)) @x466 $x100) (= ?x99 ?x98)))) +(let ((@x939 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x786)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x786))) +(let (($x785 (<= ?x784 0))) +(let ((@x887 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x785)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x785))) +(let (($x688 (>= ?x686 0))) +(let ((@x855 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x688)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x688))) +(let ((@x979 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x425 2)))) @x26 (not (>= ?x425 2))))) +(let (($x560 (<= ?x544 0))) +(let ((@x461 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x560)) (unit-resolution @x559 @x323 $x545) $x560))) +(let (($x763 (<= ?x758 0))) +(let ((@x658 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x763)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x763))) +(let (($x581 (<= ?x576 0))) +(let ((@x986 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x581)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x581))) +(let ((@x989 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (<= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (<= ?x727 0)))) +(let (($x510 (>= ?x502 0))) +(let ((@x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x510)) (unit-resolution @x508 @x309 $x503) $x510))) +(let ((@x998 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) (>= ?x396 0))) @x802 (>= ?x396 0)))) +(let ((@x1001 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) (<= ?x437 0))) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) (<= ?x437 0)))) +(let ((@x1002 ((_ th-lemma arith farkas 1 -2 -2 -1 -2 1 1 1 1 1 1) @x1001 @x998 (hypothesis $x688) @x994 (hypothesis $x972) (hypothesis $x785) @x989 @x986 @x658 @x461 @x979 false))) +(let ((@x474 (unit-resolution (lemma @x1002 (or (not $x972) (not $x688) (not $x785))) @x855 @x887 (not $x972)))) +(let ((@x941 (unit-resolution @x474 ((_ th-lemma arith) @x939 @x427 @x880 @x872 @x902 @x899 $x972) false))) +(let ((@x942 (lemma @x941 $x283))) +(let ((@x340 (unit-resolution (def-axiom (or $x95 $x284 (not $x290))) @x295 (or $x95 $x284)))) +(let ((@x679 (unit-resolution @x340 @x942 $x95))) +(let ((@x889 (trans (symm (unit-resolution @x515 @x302 $x505) $x821) (monotonicity @x679 (= ?x504 ?x99)) $x100))) +(let (($x811 (not $x687))) +(let ((@x845 ((_ th-lemma arith assign-bounds 1 -1/2 -1/2 1/2 -1/2) (or $x688 (not $x413) (not $x465) (not $x443) (not $x509) $x861)))) +(let ((@x892 (unit-resolution @x845 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x695)) @x679 $x695) @x793 (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) @x800 $x688))) +(let ((@x935 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x117 $x811 (not $x688))) (hypothesis $x282) (or $x811 (not $x688))))) +(let ((@x955 ((_ th-lemma arith farkas -2 -2 1 -1 1 1) (unit-resolution @x935 @x892 $x811) @x998 @x1001 @x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x694)) @x679 $x694) @x979 false))) +(let ((@x472 (unit-resolution (unit-resolution (def-axiom (or $x284 $x281 $x282)) @x942 $x283) (lemma @x955 $x117) $x281))) +(unit-resolution @x472 @x889 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +0f7f4a10f8a84029fd3a6efddc4408fa429b0cda 113 0 +unsat +((set-logic ) +(proof +(let ((?x228 (mod x$ 2))) +(let ((?x262 (* (- 1) ?x228))) +(let ((?x31 (mod$ x$ 2))) +(let ((?x263 (+ ?x31 ?x262))) +(let (($x280 (>= ?x263 0))) +(let (($x264 (= ?x263 0))) +(let (($x205 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x136 (mod ?v0 ?v1))) +(let ((?x93 (* (- 1) ?v1))) +(let ((?x90 (* (- 1) ?v0))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let (($x111 (<= ?v1 0))) +(let ((?x170 (ite $x111 ?x150 ?x136))) +(let (($x78 (= ?v1 0))) +(let ((?x175 (ite $x78 ?v0 ?x170))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x175))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x181 (forall ((?v0 Int) (?v1 Int) )(let ((?x136 (mod ?v0 ?v1))) +(let ((?x93 (* (- 1) ?v1))) +(let ((?x90 (* (- 1) ?v0))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let (($x111 (<= ?v1 0))) +(let ((?x170 (ite $x111 ?x150 ?x136))) +(let (($x78 (= ?v1 0))) +(let ((?x175 (ite $x78 ?v0 ?x170))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x175)))))))))))) +)) +(let ((?x136 (mod ?1 ?0))) +(let ((?x93 (* (- 1) ?0))) +(let ((?x90 (* (- 1) ?1))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let (($x111 (<= ?0 0))) +(let ((?x170 (ite $x111 ?x150 ?x136))) +(let (($x78 (= ?0 0))) +(let ((?x175 (ite $x78 ?1 ?x170))) +(let ((?x135 (mod$ ?1 ?0))) +(let (($x178 (= ?x135 ?x175))) +(let (($x142 (forall ((?v0 Int) (?v1 Int) )(let (($x78 (= ?v1 0))) +(let ((?x140 (ite $x78 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x140))))) +)) +(let (($x164 (forall ((?v0 Int) (?v1 Int) )(let ((?x93 (* (- 1) ?v1))) +(let ((?x90 (* (- 1) ?v0))) +(let ((?x144 (mod ?x90 ?x93))) +(let ((?x150 (* (- 1) ?x144))) +(let ((?x136 (mod ?v0 ?v1))) +(let (($x79 (< 0 ?v1))) +(let ((?x155 (ite $x79 ?x136 ?x150))) +(let (($x78 (= ?v1 0))) +(let ((?x158 (ite $x78 ?v0 ?x155))) +(let ((?x135 (mod$ ?v0 ?v1))) +(= ?x135 ?x158)))))))))))) +)) +(let ((@x169 (monotonicity (rewrite (= (< 0 ?0) (not $x111))) (= (ite (< 0 ?0) ?x136 ?x150) (ite (not $x111) ?x136 ?x150))))) +(let ((@x174 (trans @x169 (rewrite (= (ite (not $x111) ?x136 ?x150) ?x170)) (= (ite (< 0 ?0) ?x136 ?x150) ?x170)))) +(let ((@x177 (monotonicity @x174 (= (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150)) ?x175)))) +(let ((@x180 (monotonicity @x177 (= (= ?x135 (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150))) $x178)))) +(let (($x79 (< 0 ?0))) +(let ((?x155 (ite $x79 ?x136 ?x150))) +(let ((?x158 (ite $x78 ?1 ?x155))) +(let (($x161 (= ?x135 ?x158))) +(let (($x162 (= (= ?x135 (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))))) $x161))) +(let ((@x146 (monotonicity (rewrite (= (- ?1) ?x90)) (rewrite (= (- ?0) ?x93)) (= (mod (- ?1) (- ?0)) ?x144)))) +(let ((@x154 (trans (monotonicity @x146 (= (- (mod (- ?1) (- ?0))) (- ?x144))) (rewrite (= (- ?x144) ?x150)) (= (- (mod (- ?1) (- ?0))) ?x150)))) +(let ((@x157 (monotonicity @x154 (= (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))) ?x155)))) +(let ((@x160 (monotonicity @x157 (= (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0))))) ?x158)))) +(let ((@x185 (trans (quant-intro (monotonicity @x160 $x162) (= $x142 $x164)) (quant-intro @x180 (= $x164 $x181)) (= $x142 $x181)))) +(let ((@x196 (mp~ (mp (asserted $x142) @x185 $x181) (nnf-pos (refl (~ $x178 $x178)) (~ $x181 $x181)) $x181))) +(let ((@x210 (mp @x196 (quant-intro (refl (= $x178 $x178)) (= $x181 $x205)) $x205))) +(let (($x270 (or (not $x205) $x264))) +(let ((?x225 (* (- 1) 2))) +(let ((?x224 (* (- 1) x$))) +(let ((?x226 (mod ?x224 ?x225))) +(let ((?x227 (* (- 1) ?x226))) +(let (($x223 (<= 2 0))) +(let ((?x229 (ite $x223 ?x227 ?x228))) +(let (($x222 (= 2 0))) +(let ((?x230 (ite $x222 x$ ?x229))) +(let (($x231 (= ?x31 ?x230))) +(let ((@x244 (monotonicity (monotonicity (rewrite (= ?x225 (- 2))) (= ?x226 (mod ?x224 (- 2)))) (= ?x227 (* (- 1) (mod ?x224 (- 2))))))) +(let ((@x247 (monotonicity (rewrite (= $x223 false)) @x244 (= ?x229 (ite false (* (- 1) (mod ?x224 (- 2))) ?x228))))) +(let ((@x251 (trans @x247 (rewrite (= (ite false (* (- 1) (mod ?x224 (- 2))) ?x228) ?x228)) (= ?x229 ?x228)))) +(let ((@x254 (monotonicity (rewrite (= $x222 false)) @x251 (= ?x230 (ite false x$ ?x228))))) +(let ((@x261 (monotonicity (trans @x254 (rewrite (= (ite false x$ ?x228) ?x228)) (= ?x230 ?x228)) (= $x231 (= ?x31 ?x228))))) +(let ((@x274 (monotonicity (trans @x261 (rewrite (= (= ?x31 ?x228) $x264)) (= $x231 $x264)) (= (or (not $x205) $x231) $x270)))) +(let ((@x277 (trans @x274 (rewrite (= $x270 $x270)) (= (or (not $x205) $x231) $x270)))) +(let ((@x278 (mp ((_ quant-inst x$ 2) (or (not $x205) $x231)) @x277 $x270))) +(let ((@x337 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280))) +(let (($x305 (>= ?x228 0))) +(let (($x64 (>= ?x31 0))) +(let (($x67 (not $x64))) +(let (($x36 (not (<= (+ x$ 1) (+ x$ (+ (* 2 ?x31) 1)))))) +(let ((@x69 (monotonicity (rewrite (= (>= (* 2 ?x31) 0) $x64)) (= (not (>= (* 2 ?x31) 0)) $x67)))) +(let ((?x32 (* 2 ?x31))) +(let ((?x47 (+ 1 x$ ?x32))) +(let (($x52 (<= (+ 1 x$) ?x47))) +(let (($x55 (not $x52))) +(let ((@x63 (monotonicity (rewrite (= $x52 (>= ?x32 0))) (= $x55 (not (>= ?x32 0)))))) +(let ((@x46 (monotonicity (rewrite (= (+ ?x32 1) (+ 1 ?x32))) (= (+ x$ (+ ?x32 1)) (+ x$ (+ 1 ?x32)))))) +(let ((@x51 (trans @x46 (rewrite (= (+ x$ (+ 1 ?x32)) ?x47)) (= (+ x$ (+ ?x32 1)) ?x47)))) +(let ((@x54 (monotonicity (rewrite (= (+ x$ 1) (+ 1 x$))) @x51 (= (<= (+ x$ 1) (+ x$ (+ ?x32 1))) $x52)))) +(let ((@x73 (trans (monotonicity @x54 (= $x36 $x55)) (trans @x63 @x69 (= $x55 $x67)) (= $x36 $x67)))) +(let ((@x74 (mp (asserted $x36) @x73 $x67))) +((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x337 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +fa5abc269019f00f5093218b287856c2a08c0adf 112 0 +unsat +((set-logic ) +(proof +(let ((?x224 (mod x$ 2))) +(let (($x318 (>= ?x224 2))) +(let (($x319 (not $x318))) +(let ((?x258 (* (- 1) ?x224))) +(let ((?x29 (mod$ x$ 2))) +(let ((?x259 (+ ?x29 ?x258))) +(let (($x275 (<= ?x259 0))) +(let (($x260 (= ?x259 0))) +(let (($x201 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x132 (mod ?v0 ?v1))) +(let ((?x89 (* (- 1) ?v1))) +(let ((?x86 (* (- 1) ?v0))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let (($x107 (<= ?v1 0))) +(let ((?x166 (ite $x107 ?x146 ?x132))) +(let (($x74 (= ?v1 0))) +(let ((?x171 (ite $x74 ?v0 ?x166))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x171))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x177 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod ?v0 ?v1))) +(let ((?x89 (* (- 1) ?v1))) +(let ((?x86 (* (- 1) ?v0))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let (($x107 (<= ?v1 0))) +(let ((?x166 (ite $x107 ?x146 ?x132))) +(let (($x74 (= ?v1 0))) +(let ((?x171 (ite $x74 ?v0 ?x166))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x171)))))))))))) +)) +(let ((?x132 (mod ?1 ?0))) +(let ((?x89 (* (- 1) ?0))) +(let ((?x86 (* (- 1) ?1))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let (($x107 (<= ?0 0))) +(let ((?x166 (ite $x107 ?x146 ?x132))) +(let (($x74 (= ?0 0))) +(let ((?x171 (ite $x74 ?1 ?x166))) +(let ((?x131 (mod$ ?1 ?0))) +(let (($x174 (= ?x131 ?x171))) +(let (($x138 (forall ((?v0 Int) (?v1 Int) )(let (($x74 (= ?v1 0))) +(let ((?x136 (ite $x74 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x136))))) +)) +(let (($x160 (forall ((?v0 Int) (?v1 Int) )(let ((?x89 (* (- 1) ?v1))) +(let ((?x86 (* (- 1) ?v0))) +(let ((?x140 (mod ?x86 ?x89))) +(let ((?x146 (* (- 1) ?x140))) +(let ((?x132 (mod ?v0 ?v1))) +(let (($x75 (< 0 ?v1))) +(let ((?x151 (ite $x75 ?x132 ?x146))) +(let (($x74 (= ?v1 0))) +(let ((?x154 (ite $x74 ?v0 ?x151))) +(let ((?x131 (mod$ ?v0 ?v1))) +(= ?x131 ?x154)))))))))))) +)) +(let ((@x165 (monotonicity (rewrite (= (< 0 ?0) (not $x107))) (= (ite (< 0 ?0) ?x132 ?x146) (ite (not $x107) ?x132 ?x146))))) +(let ((@x170 (trans @x165 (rewrite (= (ite (not $x107) ?x132 ?x146) ?x166)) (= (ite (< 0 ?0) ?x132 ?x146) ?x166)))) +(let ((@x173 (monotonicity @x170 (= (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146)) ?x171)))) +(let ((@x176 (monotonicity @x173 (= (= ?x131 (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146))) $x174)))) +(let (($x75 (< 0 ?0))) +(let ((?x151 (ite $x75 ?x132 ?x146))) +(let ((?x154 (ite $x74 ?1 ?x151))) +(let (($x157 (= ?x131 ?x154))) +(let (($x158 (= (= ?x131 (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))))) $x157))) +(let ((@x142 (monotonicity (rewrite (= (- ?1) ?x86)) (rewrite (= (- ?0) ?x89)) (= (mod (- ?1) (- ?0)) ?x140)))) +(let ((@x150 (trans (monotonicity @x142 (= (- (mod (- ?1) (- ?0))) (- ?x140))) (rewrite (= (- ?x140) ?x146)) (= (- (mod (- ?1) (- ?0))) ?x146)))) +(let ((@x153 (monotonicity @x150 (= (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))) ?x151)))) +(let ((@x156 (monotonicity @x153 (= (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0))))) ?x154)))) +(let ((@x181 (trans (quant-intro (monotonicity @x156 $x158) (= $x138 $x160)) (quant-intro @x176 (= $x160 $x177)) (= $x138 $x177)))) +(let ((@x192 (mp~ (mp (asserted $x138) @x181 $x177) (nnf-pos (refl (~ $x174 $x174)) (~ $x177 $x177)) $x177))) +(let ((@x206 (mp @x192 (quant-intro (refl (= $x174 $x174)) (= $x177 $x201)) $x201))) +(let (($x266 (or (not $x201) $x260))) +(let ((?x221 (* (- 1) 2))) +(let ((?x220 (* (- 1) x$))) +(let ((?x222 (mod ?x220 ?x221))) +(let ((?x223 (* (- 1) ?x222))) +(let (($x219 (<= 2 0))) +(let ((?x225 (ite $x219 ?x223 ?x224))) +(let (($x218 (= 2 0))) +(let ((?x226 (ite $x218 x$ ?x225))) +(let (($x227 (= ?x29 ?x226))) +(let ((@x240 (monotonicity (monotonicity (rewrite (= ?x221 (- 2))) (= ?x222 (mod ?x220 (- 2)))) (= ?x223 (* (- 1) (mod ?x220 (- 2))))))) +(let ((@x243 (monotonicity (rewrite (= $x219 false)) @x240 (= ?x225 (ite false (* (- 1) (mod ?x220 (- 2))) ?x224))))) +(let ((@x247 (trans @x243 (rewrite (= (ite false (* (- 1) (mod ?x220 (- 2))) ?x224) ?x224)) (= ?x225 ?x224)))) +(let ((@x250 (monotonicity (rewrite (= $x218 false)) @x247 (= ?x226 (ite false x$ ?x224))))) +(let ((@x257 (monotonicity (trans @x250 (rewrite (= (ite false x$ ?x224) ?x224)) (= ?x226 ?x224)) (= $x227 (= ?x29 ?x224))))) +(let ((@x270 (monotonicity (trans @x257 (rewrite (= (= ?x29 ?x224) $x260)) (= $x227 $x260)) (= (or (not $x201) $x227) $x266)))) +(let ((@x273 (trans @x270 (rewrite (= $x266 $x266)) (= (or (not $x201) $x227) $x266)))) +(let ((@x274 (mp ((_ quant-inst x$ 2) (or (not $x201) $x227)) @x273 $x266))) +(let ((@x336 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275))) +(let (($x63 (>= ?x29 2))) +(let ((?x37 (* 2 ?x29))) +(let (($x56 (>= ?x37 3))) +(let (($x46 (< (+ x$ ?x37) (+ 3 x$)))) +(let (($x49 (not $x46))) +(let ((@x58 (monotonicity (rewrite (= $x46 (not $x56))) (= $x49 (not (not $x56)))))) +(let ((@x67 (trans (trans @x58 (rewrite (= (not (not $x56)) $x56)) (= $x49 $x56)) (rewrite (= $x56 $x63)) (= $x49 $x63)))) +(let ((@x42 (monotonicity (rewrite (= (+ ?x29 ?x29) ?x37)) (= (+ x$ (+ ?x29 ?x29)) (+ x$ ?x37))))) +(let ((@x48 (monotonicity @x42 (rewrite (= (+ x$ 3) (+ 3 x$))) (= (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)) $x46)))) +(let ((@x51 (monotonicity @x48 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x49)))) +(let ((@x69 (trans @x51 @x67 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x63)))) +(let ((@x70 (mp (asserted (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)))) @x69 $x63))) +((_ th-lemma arith farkas -1 1 1) @x70 @x336 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +1880f0ed1cb3d1cfa006dff17f1b5553ce3a5158 236 0 +unsat +((set-logic ) +(proof +(let ((?x410 (div n$ 2))) +(let ((?x704 (* (- 1) ?x410))) +(let ((?x381 (div n$ 4))) +(let ((?x601 (* (- 2) ?x381))) +(let ((?x329 (mod n$ 4))) +(let ((?x363 (* (- 1) ?x329))) +(let ((?x35 (mod$ n$ 4))) +(let ((?x705 (+ n$ ?x35 ?x363 ?x601 ?x704))) +(let (($x706 (>= ?x705 2))) +(let ((?x39 (mod$ n$ 2))) +(let (($x515 (>= ?x39 1))) +(let (($x725 (not $x515))) +(let (($x514 (<= ?x39 1))) +(let ((?x519 (mod n$ 2))) +(let ((?x534 (* (- 1) ?x519))) +(let ((?x535 (+ ?x39 ?x534))) +(let (($x408 (<= ?x535 0))) +(let (($x490 (= ?x535 0))) +(let (($x191 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x108 (mod ?v0 ?v1))) +(let ((?x65 (* (- 1) ?v1))) +(let ((?x62 (* (- 1) ?v0))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let (($x83 (<= ?v1 0))) +(let ((?x142 (ite $x83 ?x122 ?x108))) +(let (($x50 (= ?v1 0))) +(let ((?x147 (ite $x50 ?v0 ?x142))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x147))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x153 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod ?v0 ?v1))) +(let ((?x65 (* (- 1) ?v1))) +(let ((?x62 (* (- 1) ?v0))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let (($x83 (<= ?v1 0))) +(let ((?x142 (ite $x83 ?x122 ?x108))) +(let (($x50 (= ?v1 0))) +(let ((?x147 (ite $x50 ?v0 ?x142))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x147)))))))))))) +)) +(let ((?x108 (mod ?1 ?0))) +(let ((?x65 (* (- 1) ?0))) +(let ((?x62 (* (- 1) ?1))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let (($x83 (<= ?0 0))) +(let ((?x142 (ite $x83 ?x122 ?x108))) +(let (($x50 (= ?0 0))) +(let ((?x147 (ite $x50 ?1 ?x142))) +(let ((?x107 (mod$ ?1 ?0))) +(let (($x150 (= ?x107 ?x147))) +(let (($x114 (forall ((?v0 Int) (?v1 Int) )(let (($x50 (= ?v1 0))) +(let ((?x112 (ite $x50 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x112))))) +)) +(let (($x136 (forall ((?v0 Int) (?v1 Int) )(let ((?x65 (* (- 1) ?v1))) +(let ((?x62 (* (- 1) ?v0))) +(let ((?x116 (mod ?x62 ?x65))) +(let ((?x122 (* (- 1) ?x116))) +(let ((?x108 (mod ?v0 ?v1))) +(let (($x51 (< 0 ?v1))) +(let ((?x127 (ite $x51 ?x108 ?x122))) +(let (($x50 (= ?v1 0))) +(let ((?x130 (ite $x50 ?v0 ?x127))) +(let ((?x107 (mod$ ?v0 ?v1))) +(= ?x107 ?x130)))))))))))) +)) +(let ((@x141 (monotonicity (rewrite (= (< 0 ?0) (not $x83))) (= (ite (< 0 ?0) ?x108 ?x122) (ite (not $x83) ?x108 ?x122))))) +(let ((@x146 (trans @x141 (rewrite (= (ite (not $x83) ?x108 ?x122) ?x142)) (= (ite (< 0 ?0) ?x108 ?x122) ?x142)))) +(let ((@x149 (monotonicity @x146 (= (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122)) ?x147)))) +(let ((@x152 (monotonicity @x149 (= (= ?x107 (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122))) $x150)))) +(let (($x51 (< 0 ?0))) +(let ((?x127 (ite $x51 ?x108 ?x122))) +(let ((?x130 (ite $x50 ?1 ?x127))) +(let (($x133 (= ?x107 ?x130))) +(let (($x134 (= (= ?x107 (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))))) $x133))) +(let ((@x118 (monotonicity (rewrite (= (- ?1) ?x62)) (rewrite (= (- ?0) ?x65)) (= (mod (- ?1) (- ?0)) ?x116)))) +(let ((@x126 (trans (monotonicity @x118 (= (- (mod (- ?1) (- ?0))) (- ?x116))) (rewrite (= (- ?x116) ?x122)) (= (- (mod (- ?1) (- ?0))) ?x122)))) +(let ((@x129 (monotonicity @x126 (= (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))) ?x127)))) +(let ((@x132 (monotonicity @x129 (= (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0))))) ?x130)))) +(let ((@x157 (trans (quant-intro (monotonicity @x132 $x134) (= $x114 $x136)) (quant-intro @x152 (= $x136 $x153)) (= $x114 $x153)))) +(let ((@x168 (mp~ (mp (asserted $x114) @x157 $x153) (nnf-pos (refl (~ $x150 $x150)) (~ $x153 $x153)) $x153))) +(let ((@x196 (mp @x168 (quant-intro (refl (= $x150 $x150)) (= $x153 $x191)) $x191))) +(let (($x260 (not $x191))) +(let (($x541 (or $x260 $x490))) +(let ((?x211 (* (- 1) 2))) +(let ((?x222 (* (- 1) n$))) +(let ((?x517 (mod ?x222 ?x211))) +(let ((?x518 (* (- 1) ?x517))) +(let (($x209 (<= 2 0))) +(let ((?x520 (ite $x209 ?x518 ?x519))) +(let (($x208 (= 2 0))) +(let ((?x521 (ite $x208 n$ ?x520))) +(let (($x485 (= ?x39 ?x521))) +(let ((@x593 (monotonicity (monotonicity (rewrite (= ?x211 (- 2))) (= ?x517 (mod ?x222 (- 2)))) (= ?x518 (* (- 1) (mod ?x222 (- 2))))))) +(let ((@x221 (rewrite (= $x209 false)))) +(let ((@x596 (monotonicity @x221 @x593 (= ?x520 (ite false (* (- 1) (mod ?x222 (- 2))) ?x519))))) +(let ((@x599 (trans @x596 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 2))) ?x519) ?x519)) (= ?x520 ?x519)))) +(let ((@x219 (rewrite (= $x208 false)))) +(let ((@x487 (trans (monotonicity @x219 @x599 (= ?x521 (ite false n$ ?x519))) (rewrite (= (ite false n$ ?x519) ?x519)) (= ?x521 ?x519)))) +(let ((@x538 (trans (monotonicity @x487 (= $x485 (= ?x39 ?x519))) (rewrite (= (= ?x39 ?x519) $x490)) (= $x485 $x490)))) +(let ((@x406 (trans (monotonicity @x538 (= (or $x260 $x485) $x541)) (rewrite (= $x541 $x541)) (= (or $x260 $x485) $x541)))) +(let ((@x407 (mp ((_ quant-inst n$ 2) (or $x260 $x485)) @x406 $x541))) +(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x408)) (unit-resolution @x407 @x196 $x490) $x408))) +(let (($x303 (>= ?x519 2))) +(let (($x304 (not $x303))) +(let ((@x26 (true-axiom true))) +(let ((@x722 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x514 $x303 (not $x408))) (unit-resolution ((_ th-lemma arith) (or false $x304)) @x26 $x304) @x715 $x514))) +(let (($x41 (= ?x39 1))) +(let (($x169 (not $x41))) +(let ((?x42 (mod$ m$ 2))) +(let (($x43 (= ?x42 1))) +(let ((?x29 (+ n$ m$))) +(let ((?x214 (mod ?x29 2))) +(let ((?x253 (* (- 1) ?x214))) +(let ((?x31 (mod$ ?x29 2))) +(let ((?x603 (+ n$ m$ ?x31 ?x35 ?x253 (* (- 1) (div ?x29 2)) ?x363 ?x601 (* (- 1) (div m$ 2))))) +(let (($x604 (>= ?x603 2))) +(let (($x523 (>= ?x42 1))) +(let (($x609 (not $x523))) +(let (($x522 (<= ?x42 1))) +(let ((?x439 (mod m$ 2))) +(let ((?x466 (* (- 1) ?x439))) +(let ((?x467 (+ ?x42 ?x466))) +(let (($x482 (<= ?x467 0))) +(let (($x468 (= ?x467 0))) +(let (($x473 (or $x260 $x468))) +(let ((?x440 (ite $x209 (* (- 1) (mod (* (- 1) m$) ?x211)) ?x439))) +(let ((?x441 (ite $x208 m$ ?x440))) +(let (($x442 (= ?x42 ?x441))) +(let ((@x453 (rewrite (= (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439) ?x439)))) +(let (($x447 (= (* (- 1) (mod (* (- 1) m$) ?x211)) (* (- 1) (mod (* (- 1) m$) (- 2)))))) +(let ((@x229 (rewrite (= ?x211 (- 2))))) +(let ((@x445 (monotonicity @x229 (= (mod (* (- 1) m$) ?x211) (mod (* (- 1) m$) (- 2)))))) +(let ((@x451 (monotonicity @x221 (monotonicity @x445 $x447) (= ?x440 (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439))))) +(let ((@x458 (monotonicity @x219 (trans @x451 @x453 (= ?x440 ?x439)) (= ?x441 (ite false m$ ?x439))))) +(let ((@x465 (monotonicity (trans @x458 (rewrite (= (ite false m$ ?x439) ?x439)) (= ?x441 ?x439)) (= $x442 (= ?x42 ?x439))))) +(let ((@x477 (monotonicity (trans @x465 (rewrite (= (= ?x42 ?x439) $x468)) (= $x442 $x468)) (= (or $x260 $x442) $x473)))) +(let ((@x481 (mp ((_ quant-inst m$ 2) (or $x260 $x442)) (trans @x477 (rewrite (= $x473 $x473)) (= (or $x260 $x442) $x473)) $x473))) +(let ((@x277 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) $x482)) (unit-resolution @x481 @x196 $x468) $x482))) +(let ((@x386 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x439 2)))) @x26 (not (>= ?x439 2))))) +(let ((@x384 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x522 (>= ?x439 2) (not $x482))) @x386 @x277 $x522))) +(let ((@x564 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x43 (not $x522) $x609)) (hypothesis (not $x43)) (or (not $x522) $x609)))) +(let ((?x272 (div ?x29 2))) +(let ((?x288 (* (- 2) ?x272))) +(let ((?x289 (+ n$ m$ ?x253 ?x288))) +(let (($x294 (<= ?x289 0))) +(let (($x287 (= ?x289 0))) +(let ((@x617 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x294)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x294))) +(let (($x433 (<= ?x31 0))) +(let (($x32 (= ?x31 0))) +(let ((@x33 (asserted $x32))) +(let ((?x254 (+ ?x31 ?x253))) +(let (($x270 (<= ?x254 0))) +(let (($x255 (= ?x254 0))) +(let (($x261 (or $x260 $x255))) +(let ((?x215 (ite $x209 (* (- 1) (mod (* (- 1) ?x29) ?x211)) ?x214))) +(let ((?x216 (ite $x208 ?x29 ?x215))) +(let (($x217 (= ?x31 ?x216))) +(let (($x239 (= (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214) ?x214))) +(let (($x237 (= ?x215 (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214)))) +(let (($x234 (= (* (- 1) (mod (* (- 1) ?x29) ?x211)) (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2)))))) +(let ((@x232 (monotonicity (rewrite (= (* (- 1) ?x29) (+ ?x222 (* (- 1) m$)))) @x229 (= (mod (* (- 1) ?x29) ?x211) (mod (+ ?x222 (* (- 1) m$)) (- 2)))))) +(let ((@x242 (trans (monotonicity @x221 (monotonicity @x232 $x234) $x237) (rewrite $x239) (= ?x215 ?x214)))) +(let ((@x249 (trans (monotonicity @x219 @x242 (= ?x216 (ite false ?x29 ?x214))) (rewrite (= (ite false ?x29 ?x214) ?x214)) (= ?x216 ?x214)))) +(let ((@x259 (trans (monotonicity @x249 (= $x217 (= ?x31 ?x214))) (rewrite (= (= ?x31 ?x214) $x255)) (= $x217 $x255)))) +(let ((@x268 (trans (monotonicity @x259 (= (or $x260 $x217) $x261)) (rewrite (= $x261 $x261)) (= (or $x260 $x217) $x261)))) +(let ((@x269 (mp ((_ quant-inst (+ n$ m$) 2) (or $x260 $x217)) @x268 $x261))) +(let ((@x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x270)) (unit-resolution @x269 @x196 $x255) $x270))) +(let ((?x498 (+ m$ ?x466 (* (- 2) (div m$ 2))))) +(let (($x496 (= ?x498 0))) +(let ((@x633 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (<= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (<= ?x498 0)))) +(let ((?x397 (* (- 4) ?x381))) +(let ((?x398 (+ n$ ?x363 ?x397))) +(let (($x403 (<= ?x398 0))) +(let (($x396 (= ?x398 0))) +(let ((@x640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x403)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x403))) +(let ((?x364 (+ ?x35 ?x363))) +(let (($x379 (<= ?x364 0))) +(let (($x365 (= ?x364 0))) +(let (($x370 (or $x260 $x365))) +(let ((?x330 (ite (<= 4 0) (* (- 1) (mod ?x222 (* (- 1) 4))) ?x329))) +(let ((?x331 (ite (= 4 0) n$ ?x330))) +(let (($x332 (= ?x35 ?x331))) +(let ((@x342 (monotonicity (rewrite (= (* (- 1) 4) (- 4))) (= (mod ?x222 (* (- 1) 4)) (mod ?x222 (- 4)))))) +(let ((@x345 (monotonicity @x342 (= (* (- 1) (mod ?x222 (* (- 1) 4))) (* (- 1) (mod ?x222 (- 4))))))) +(let ((@x348 (monotonicity (rewrite (= (<= 4 0) false)) @x345 (= ?x330 (ite false (* (- 1) (mod ?x222 (- 4))) ?x329))))) +(let ((@x352 (trans @x348 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 4))) ?x329) ?x329)) (= ?x330 ?x329)))) +(let ((@x355 (monotonicity (rewrite (= (= 4 0) false)) @x352 (= ?x331 (ite false n$ ?x329))))) +(let ((@x362 (monotonicity (trans @x355 (rewrite (= (ite false n$ ?x329) ?x329)) (= ?x331 ?x329)) (= $x332 (= ?x35 ?x329))))) +(let ((@x374 (monotonicity (trans @x362 (rewrite (= (= ?x35 ?x329) $x365)) (= $x332 $x365)) (= (or $x260 $x332) $x370)))) +(let ((@x378 (mp ((_ quant-inst n$ 4) (or $x260 $x332)) (trans @x374 (rewrite (= $x370 $x370)) (= (or $x260 $x332) $x370)) $x370))) +(let ((@x645 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x379)) (unit-resolution @x378 @x196 $x365) $x379))) +(let (($x435 (<= ?x35 3))) +(let (($x37 (= ?x35 3))) +(let ((@x38 (asserted $x37))) +(let ((@x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) (>= ?x467 0))) (unit-resolution @x481 @x196 $x468) (>= ?x467 0)))) +(let ((@x656 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1 1 1 1) @x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x604) @x645 @x640 @x633 @x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x433)) @x33 $x433) @x617 (hypothesis $x609) false))) +(let ((@x565 (unit-resolution (lemma @x656 (or (not $x604) $x523)) (unit-resolution @x564 @x384 $x609) (not $x604)))) +(let (($x295 (>= ?x289 0))) +(let ((@x566 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x295)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x295))) +(let (($x434 (>= ?x31 0))) +(let (($x271 (>= ?x254 0))) +(let ((@x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x271)) (unit-resolution @x269 @x196 $x255) $x271))) +(let ((@x537 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (>= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (>= ?x498 0)))) +(let ((@x549 (unit-resolution ((_ th-lemma arith) (or false (>= ?x439 0))) @x26 (>= ?x439 0)))) +(let (($x404 (>= ?x398 0))) +(let ((@x552 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x404)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x404))) +(let (($x380 (>= ?x364 0))) +(let ((@x273 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x380)) (unit-resolution @x378 @x196 $x365) $x380))) +(let (($x436 (>= ?x35 3))) +(let ((@x545 ((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x273 @x552 @x549 @x537 @x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x434)) @x33 $x434) @x566 @x565 false))) +(let (($x171 (or $x169 (not $x43)))) +(let ((@x177 (monotonicity (rewrite (= (and $x41 $x43) (not $x171))) (= (not (and $x41 $x43)) (not (not $x171)))))) +(let ((@x181 (trans @x177 (rewrite (= (not (not $x171)) $x171)) (= (not (and $x41 $x43)) $x171)))) +(let ((@x182 (mp (asserted (not (and $x41 $x43))) @x181 $x171))) +(let ((@x729 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x41 (not $x514) $x725)) (unit-resolution @x182 (lemma @x545 $x43) $x169) (or (not $x514) $x725)))) +(let ((?x420 (* (- 2) ?x410))) +(let ((?x421 (+ n$ ?x420 ?x534))) +(let (($x426 (<= ?x421 0))) +(let (($x419 (= ?x421 0))) +(let ((@x737 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x426)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x426))) +(let (($x409 (>= ?x535 0))) +(let ((@x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x409)) (unit-resolution @x407 @x196 $x490) $x409))) +(let ((@x742 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1) @x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x706) @x640 @x737 @x645 (unit-resolution @x729 @x722 $x725) false))) +(let (($x427 (>= ?x421 0))) +(let ((@x584 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x427)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x427))) +(let (($x542 (>= ?x519 0))) +((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x552 (unit-resolution ((_ th-lemma arith) (or false $x542)) @x26 $x542) @x584 @x273 (lemma @x742 (not $x706)) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + +f6a4c40290fd6742c0b08a1fe90b3664e90c2143 336 0 +unsat +((set-logic ) +(proof +(let ((?x99 (mod$ l$ 2))) +(let ((?x96 (map$ uu$ xs$))) +(let ((?x97 (eval_dioph$ ks$ ?x96))) +(let ((?x98 (mod$ ?x97 2))) +(let (($x100 (= ?x98 ?x99))) +(let ((?x93 (eval_dioph$ ks$ xs$))) +(let (($x95 (= ?x93 l$))) +(let ((?x110 (* (- 1) ?x97))) +(let ((?x111 (+ l$ ?x110))) +(let ((?x114 (divide$ ?x111 2))) +(let ((?x101 (map$ uua$ xs$))) +(let ((?x102 (eval_dioph$ ks$ ?x101))) +(let (($x117 (= ?x102 ?x114))) +(let (($x282 (not $x117))) +(let (($x281 (not $x100))) +(let (($x283 (or $x281 $x282))) +(let ((?x744 (div ?x93 2))) +(let ((?x970 (* (- 1) ?x744))) +(let ((?x699 (mod ?x93 2))) +(let ((?x726 (* (- 1) ?x699))) +(let ((?x516 (mod l$ 2))) +(let ((?x543 (* (- 1) ?x516))) +(let (($x972 (>= (+ l$ ?x99 ?x543 (* (- 1) (div l$ 2)) ?x726 ?x970) 1))) +(let ((?x369 (* (- 1) l$))) +(let ((?x693 (+ ?x93 ?x369))) +(let (($x695 (>= ?x693 0))) +(let (($x861 (not $x695))) +(let (($x694 (<= ?x693 0))) +(let ((?x686 (+ ?x102 (* (- 1) ?x114)))) +(let (($x687 (<= ?x686 0))) +(let (($x284 (not $x283))) +(let ((@x466 (hypothesis $x284))) +(let ((@x856 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x687)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x687))) +(let ((?x437 (+ l$ ?x110 (* (- 2) (div ?x111 2)) (* (- 1) (mod (+ l$ ?x97) 2))))) +(let (($x443 (>= ?x437 0))) +(let (($x434 (= ?x437 0))) +(let ((@x26 (true-axiom true))) +(let ((@x793 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) $x443)) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) $x443))) +(let ((?x501 (* (- 2) ?x102))) +(let ((?x502 (+ ?x93 ?x110 ?x501))) +(let (($x509 (<= ?x502 0))) +(let (($x503 (= ?x502 0))) +(let (($x304 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1)))))) +(= ?x83 0))) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :pattern ( (eval_dioph$ ?v0 (map$ uua$ ?v1)) ))) +)) +(let (($x85 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1)))))) +(= ?x83 0)))) +)) +(let ((?x45 (eval_dioph$ ?1 ?0))) +(let ((?x83 (+ ?x45 (* (- 1) (eval_dioph$ ?1 (map$ uu$ ?0))) (* (- 2) (eval_dioph$ ?1 (map$ uua$ ?0)))))) +(let (($x79 (= ?x83 0))) +(let (($x58 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1)))) +(let ((?x56 (+ (* (eval_dioph$ ?v0 (map$ uua$ ?v1)) 2) ?x48))) +(= ?x56 ?x45))))) +)) +(let (($x74 (forall ((?v0 Int_list$) (?v1 Int_list$) )(let ((?x45 (eval_dioph$ ?v0 ?v1))) +(let ((?x54 (eval_dioph$ ?v0 (map$ uua$ ?v1)))) +(let ((?x60 (* 2 ?x54))) +(let ((?x48 (eval_dioph$ ?v0 (map$ uu$ ?v1)))) +(let ((?x66 (+ ?x48 ?x60))) +(= ?x66 ?x45))))))) +)) +(let ((?x54 (eval_dioph$ ?1 (map$ uua$ ?0)))) +(let ((?x60 (* 2 ?x54))) +(let ((?x48 (eval_dioph$ ?1 (map$ uu$ ?0)))) +(let ((?x66 (+ ?x48 ?x60))) +(let (($x71 (= ?x66 ?x45))) +(let ((@x65 (monotonicity (rewrite (= (* ?x54 2) ?x60)) (= (+ (* ?x54 2) ?x48) (+ ?x60 ?x48))))) +(let ((@x70 (trans @x65 (rewrite (= (+ ?x60 ?x48) ?x66)) (= (+ (* ?x54 2) ?x48) ?x66)))) +(let ((@x76 (quant-intro (monotonicity @x70 (= (= (+ (* ?x54 2) ?x48) ?x45) $x71)) (= $x58 $x74)))) +(let ((@x89 (trans @x76 (quant-intro (rewrite (= $x71 $x79)) (= $x74 $x85)) (= $x58 $x85)))) +(let ((@x270 (mp~ (mp (asserted $x58) @x89 $x85) (nnf-pos (refl (~ $x79 $x79)) (~ $x85 $x85)) $x85))) +(let ((@x309 (mp @x270 (quant-intro (refl (= $x79 $x79)) (= $x85 $x304)) $x304))) +(let (($x507 (or (not $x304) $x503))) +(let ((@x508 ((_ quant-inst ks$ xs$) $x507))) +(let ((@x800 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x509)) (unit-resolution @x508 @x309 $x503) $x509))) +(let ((?x396 (+ ?x114 (* (- 1) (div ?x111 2))))) +(let (($x413 (<= ?x396 0))) +(let (($x397 (= ?x396 0))) +(let (($x311 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x145 (div ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x160 (div ?x154 ?x157))) +(let (($x175 (<= ?v1 0))) +(let ((?x182 (ite $x175 ?x160 ?x145))) +(let (($x143 (= ?v1 0))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 (ite $x143 0 ?x182)))))))))) :pattern ( (divide$ ?v0 ?v1) ))) +)) +(let (($x193 (forall ((?v0 Int) (?v1 Int) )(let ((?x145 (div ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x160 (div ?x154 ?x157))) +(let (($x175 (<= ?v1 0))) +(let ((?x182 (ite $x175 ?x160 ?x145))) +(let (($x143 (= ?v1 0))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 (ite $x143 0 ?x182))))))))))) +)) +(let ((?x145 (div ?1 ?0))) +(let ((?x157 (* (- 1) ?0))) +(let ((?x154 (* (- 1) ?1))) +(let ((?x160 (div ?x154 ?x157))) +(let (($x175 (<= ?0 0))) +(let ((?x182 (ite $x175 ?x160 ?x145))) +(let (($x143 (= ?0 0))) +(let ((?x141 (divide$ ?1 ?0))) +(let (($x190 (= ?x141 (ite $x143 0 ?x182)))) +(let (($x152 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0))) +(let ((?x150 (ite $x143 0 (ite (< 0 ?v1) (div ?v0 ?v1) (div (- ?v0) (- ?v1)))))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 ?x150))))) +)) +(let (($x172 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x160 (div ?x154 ?x157))) +(let ((?x145 (div ?v0 ?v1))) +(let (($x144 (< 0 ?v1))) +(let ((?x163 (ite $x144 ?x145 ?x160))) +(let (($x143 (= ?v1 0))) +(let ((?x166 (ite $x143 0 ?x163))) +(let ((?x141 (divide$ ?v0 ?v1))) +(= ?x141 ?x166))))))))))) +)) +(let (($x144 (< 0 ?0))) +(let ((?x163 (ite $x144 ?x145 ?x160))) +(let ((?x166 (ite $x143 0 ?x163))) +(let ((@x181 (monotonicity (rewrite (= $x144 (not $x175))) (= ?x163 (ite (not $x175) ?x145 ?x160))))) +(let ((@x186 (trans @x181 (rewrite (= (ite (not $x175) ?x145 ?x160) ?x182)) (= ?x163 ?x182)))) +(let ((@x192 (monotonicity (monotonicity @x186 (= ?x166 (ite $x143 0 ?x182))) (= (= ?x141 ?x166) $x190)))) +(let (($x169 (= ?x141 ?x166))) +(let (($x170 (= (= ?x141 (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0))))) $x169))) +(let ((@x162 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (div (- ?1) (- ?0)) ?x160)))) +(let ((@x168 (monotonicity (monotonicity @x162 (= (ite $x144 ?x145 (div (- ?1) (- ?0))) ?x163)) (= (ite $x143 0 (ite $x144 ?x145 (div (- ?1) (- ?0)))) ?x166)))) +(let ((@x197 (trans (quant-intro (monotonicity @x168 $x170) (= $x152 $x172)) (quant-intro @x192 (= $x172 $x193)) (= $x152 $x193)))) +(let ((@x275 (mp~ (mp (asserted $x152) @x197 $x193) (nnf-pos (refl (~ $x190 $x190)) (~ $x193 $x193)) $x193))) +(let ((@x316 (mp @x275 (quant-intro (refl (= $x190 $x190)) (= $x193 $x311)) $x311))) +(let (($x403 (or (not $x311) $x397))) +(let ((?x361 (div ?x111 2))) +(let (($x357 (<= 2 0))) +(let ((?x362 (ite $x357 (div (* (- 1) ?x111) (* (- 1) 2)) ?x361))) +(let (($x356 (= 2 0))) +(let ((?x363 (ite $x356 0 ?x362))) +(let (($x364 (= ?x114 ?x363))) +(let ((@x374 (rewrite (= (* (- 1) 2) (- 2))))) +(let ((@x377 (monotonicity (rewrite (= (* (- 1) ?x111) (+ ?x369 ?x97))) @x374 (= (div (* (- 1) ?x111) (* (- 1) 2)) (div (+ ?x369 ?x97) (- 2)))))) +(let ((@x368 (rewrite (= $x357 false)))) +(let ((@x380 (monotonicity @x368 @x377 (= ?x362 (ite false (div (+ ?x369 ?x97) (- 2)) ?x361))))) +(let ((@x384 (trans @x380 (rewrite (= (ite false (div (+ ?x369 ?x97) (- 2)) ?x361) ?x361)) (= ?x362 ?x361)))) +(let ((@x366 (rewrite (= $x356 false)))) +(let ((@x391 (trans (monotonicity @x366 @x384 (= ?x363 (ite false 0 ?x361))) (rewrite (= (ite false 0 ?x361) ?x361)) (= ?x363 ?x361)))) +(let ((@x401 (trans (monotonicity @x391 (= $x364 (= ?x114 ?x361))) (rewrite (= (= ?x114 ?x361) $x397)) (= $x364 $x397)))) +(let ((@x410 (trans (monotonicity @x401 (= (or (not $x311) $x364) $x403)) (rewrite (= $x403 $x403)) (= (or (not $x311) $x364) $x403)))) +(let ((@x802 (unit-resolution (mp ((_ quant-inst (+ l$ ?x110) 2) (or (not $x311) $x364)) @x410 $x403) @x316 $x397))) +(let ((?x425 (mod (+ l$ ?x97) 2))) +(let (($x465 (>= ?x425 0))) +(let ((@x810 ((_ th-lemma arith farkas 1 -2 -2 -1 1 1) (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (hypothesis $x687) @x800 (hypothesis (not $x694)) @x793 false))) +(let (($x134 (not $x95))) +(let (($x290 (= $x95 $x283))) +(let ((@x289 (monotonicity (rewrite (= (and $x100 $x117) $x284)) (= (= $x134 (and $x100 $x117)) (= $x134 $x284))))) +(let ((@x294 (trans @x289 (rewrite (= (= $x134 $x284) $x290)) (= (= $x134 (and $x100 $x117)) $x290)))) +(let (($x120 (and $x100 $x117))) +(let (($x135 (= $x134 $x120))) +(let (($x107 (= $x95 (and $x100 (= ?x102 (divide$ (- l$ ?x97) 2)))))) +(let (($x108 (not $x107))) +(let ((@x116 (monotonicity (rewrite (= (- l$ ?x97) ?x111)) (= (divide$ (- l$ ?x97) 2) ?x114)))) +(let ((@x122 (monotonicity (monotonicity @x116 (= (= ?x102 (divide$ (- l$ ?x97) 2)) $x117)) (= (and $x100 (= ?x102 (divide$ (- l$ ?x97) 2))) $x120)))) +(let ((@x130 (trans (monotonicity @x122 (= $x107 (= $x95 $x120))) (rewrite (= (= $x95 $x120) (= $x95 $x120))) (= $x107 (= $x95 $x120))))) +(let ((@x139 (trans (monotonicity @x130 (= $x108 (not (= $x95 $x120)))) (rewrite (= (not (= $x95 $x120)) $x135)) (= $x108 $x135)))) +(let ((@x295 (mp (mp (asserted $x108) @x139 $x135) @x294 $x290))) +(let ((@x344 (unit-resolution (def-axiom (or $x134 $x283 (not $x290))) @x295 (or $x134 $x283)))) +(let ((@x898 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x95 (not $x694) $x861)) (unit-resolution @x344 @x466 $x134) (or (not $x694) $x861)))) +(let ((@x899 (unit-resolution @x898 (unit-resolution (lemma @x810 (or $x694 (not $x687))) @x856 $x694) $x861))) +(let ((?x544 (+ ?x99 ?x543))) +(let (($x561 (>= ?x544 0))) +(let (($x545 (= ?x544 0))) +(let (($x318 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x200 (mod ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?v1 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?v1 0))) +(let ((?x239 (ite $x143 ?v0 ?x234))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x239))))))))))) :pattern ( (mod$ ?v0 ?v1) ))) +)) +(let (($x245 (forall ((?v0 Int) (?v1 Int) )(let ((?x200 (mod ?v0 ?v1))) +(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let (($x175 (<= ?v1 0))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let (($x143 (= ?v1 0))) +(let ((?x239 (ite $x143 ?v0 ?x234))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x239)))))))))))) +)) +(let ((?x200 (mod ?1 ?0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let ((?x234 (ite $x175 ?x214 ?x200))) +(let ((?x239 (ite $x143 ?1 ?x234))) +(let ((?x199 (mod$ ?1 ?0))) +(let (($x242 (= ?x199 ?x239))) +(let (($x206 (forall ((?v0 Int) (?v1 Int) )(let (($x143 (= ?v1 0))) +(let ((?x204 (ite $x143 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1))))))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x204))))) +)) +(let (($x228 (forall ((?v0 Int) (?v1 Int) )(let ((?x157 (* (- 1) ?v1))) +(let ((?x154 (* (- 1) ?v0))) +(let ((?x208 (mod ?x154 ?x157))) +(let ((?x214 (* (- 1) ?x208))) +(let ((?x200 (mod ?v0 ?v1))) +(let (($x144 (< 0 ?v1))) +(let ((?x219 (ite $x144 ?x200 ?x214))) +(let (($x143 (= ?v1 0))) +(let ((?x222 (ite $x143 ?v0 ?x219))) +(let ((?x199 (mod$ ?v0 ?v1))) +(= ?x199 ?x222)))))))))))) +)) +(let ((@x233 (monotonicity (rewrite (= $x144 (not $x175))) (= (ite $x144 ?x200 ?x214) (ite (not $x175) ?x200 ?x214))))) +(let ((@x238 (trans @x233 (rewrite (= (ite (not $x175) ?x200 ?x214) ?x234)) (= (ite $x144 ?x200 ?x214) ?x234)))) +(let ((@x244 (monotonicity (monotonicity @x238 (= (ite $x143 ?1 (ite $x144 ?x200 ?x214)) ?x239)) (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 ?x214))) $x242)))) +(let ((?x219 (ite $x144 ?x200 ?x214))) +(let ((?x222 (ite $x143 ?1 ?x219))) +(let (($x225 (= ?x199 ?x222))) +(let (($x226 (= (= ?x199 (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))))) $x225))) +(let ((@x210 (monotonicity (rewrite (= (- ?1) ?x154)) (rewrite (= (- ?0) ?x157)) (= (mod (- ?1) (- ?0)) ?x208)))) +(let ((@x218 (trans (monotonicity @x210 (= (- (mod (- ?1) (- ?0))) (- ?x208))) (rewrite (= (- ?x208) ?x214)) (= (- (mod (- ?1) (- ?0))) ?x214)))) +(let ((@x221 (monotonicity @x218 (= (ite $x144 ?x200 (- (mod (- ?1) (- ?0)))) ?x219)))) +(let ((@x224 (monotonicity @x221 (= (ite $x143 ?1 (ite $x144 ?x200 (- (mod (- ?1) (- ?0))))) ?x222)))) +(let ((@x249 (trans (quant-intro (monotonicity @x224 $x226) (= $x206 $x228)) (quant-intro @x244 (= $x228 $x245)) (= $x206 $x245)))) +(let ((@x280 (mp~ (mp (asserted $x206) @x249 $x245) (nnf-pos (refl (~ $x242 $x242)) (~ $x245 $x245)) $x245))) +(let ((@x323 (mp @x280 (quant-intro (refl (= $x242 $x242)) (= $x245 $x318)) $x318))) +(let (($x550 (not $x318))) +(let (($x551 (or $x550 $x545))) +(let ((?x359 (* (- 1) 2))) +(let ((?x511 (mod ?x369 ?x359))) +(let ((?x512 (* (- 1) ?x511))) +(let ((?x517 (ite $x357 ?x512 ?x516))) +(let ((?x518 (ite $x356 l$ ?x517))) +(let (($x519 (= ?x99 ?x518))) +(let ((@x525 (monotonicity (monotonicity @x374 (= ?x511 (mod ?x369 (- 2)))) (= ?x512 (* (- 1) (mod ?x369 (- 2))))))) +(let ((@x528 (monotonicity @x368 @x525 (= ?x517 (ite false (* (- 1) (mod ?x369 (- 2))) ?x516))))) +(let ((@x532 (trans @x528 (rewrite (= (ite false (* (- 1) (mod ?x369 (- 2))) ?x516) ?x516)) (= ?x517 ?x516)))) +(let ((@x539 (trans (monotonicity @x366 @x532 (= ?x518 (ite false l$ ?x516))) (rewrite (= (ite false l$ ?x516) ?x516)) (= ?x518 ?x516)))) +(let ((@x549 (trans (monotonicity @x539 (= $x519 (= ?x99 ?x516))) (rewrite (= (= ?x99 ?x516) $x545)) (= $x519 $x545)))) +(let ((@x558 (trans (monotonicity @x549 (= (or $x550 $x519) $x551)) (rewrite (= $x551 $x551)) (= (or $x550 $x519) $x551)))) +(let ((@x559 (mp ((_ quant-inst l$ 2) (or $x550 $x519)) @x558 $x551))) +(let ((@x902 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x561)) (unit-resolution @x559 @x323 $x545) $x561))) +(let ((?x757 (* (- 2) ?x744))) +(let ((?x758 (+ ?x93 ?x726 ?x757))) +(let (($x764 (>= ?x758 0))) +(let (($x756 (= ?x758 0))) +(let ((@x872 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x764)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x764))) +(let ((?x562 (div l$ 2))) +(let ((?x575 (* (- 2) ?x562))) +(let ((?x576 (+ l$ ?x543 ?x575))) +(let (($x582 (>= ?x576 0))) +(let (($x574 (= ?x576 0))) +(let ((@x880 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x582)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x582))) +(let ((?x504 (mod$ ?x93 2))) +(let ((?x727 (+ ?x504 ?x726))) +(let (($x728 (= ?x727 0))) +(let (($x733 (or $x550 $x728))) +(let ((?x696 (* (- 1) ?x93))) +(let ((?x697 (mod ?x696 ?x359))) +(let ((?x698 (* (- 1) ?x697))) +(let ((?x700 (ite $x357 ?x698 ?x699))) +(let ((?x701 (ite $x356 ?x93 ?x700))) +(let (($x702 (= ?x504 ?x701))) +(let ((@x708 (monotonicity (monotonicity @x374 (= ?x697 (mod ?x696 (- 2)))) (= ?x698 (* (- 1) (mod ?x696 (- 2))))))) +(let ((@x711 (monotonicity @x368 @x708 (= ?x700 (ite false (* (- 1) (mod ?x696 (- 2))) ?x699))))) +(let ((@x715 (trans @x711 (rewrite (= (ite false (* (- 1) (mod ?x696 (- 2))) ?x699) ?x699)) (= ?x700 ?x699)))) +(let ((@x722 (trans (monotonicity @x366 @x715 (= ?x701 (ite false ?x93 ?x699))) (rewrite (= (ite false ?x93 ?x699) ?x699)) (= ?x701 ?x699)))) +(let ((@x732 (trans (monotonicity @x722 (= $x702 (= ?x504 ?x699))) (rewrite (= (= ?x504 ?x699) $x728)) (= $x702 $x728)))) +(let ((@x740 (trans (monotonicity @x732 (= (or $x550 $x702) $x733)) (rewrite (= $x733 $x733)) (= (or $x550 $x702) $x733)))) +(let ((@x427 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (>= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (>= ?x727 0)))) +(let ((?x783 (* (- 1) ?x504))) +(let ((?x784 (+ ?x99 ?x783))) +(let (($x786 (>= ?x784 0))) +(let (($x782 (= ?x99 ?x504))) +(let (($x821 (= ?x98 ?x504))) +(let (($x505 (= ?x504 ?x98))) +(let (($x297 (forall ((?v0 Int_list$) (?v1 Int_list$) )(!(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ))) +)) +(let (($x51 (forall ((?v0 Int_list$) (?v1 Int_list$) )(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2))) +)) +(let (($x50 (= (mod$ ?x45 2) (mod$ ?x48 2)))) +(let ((@x265 (mp~ (asserted $x51) (nnf-pos (refl (~ $x50 $x50)) (~ $x51 $x51)) $x51))) +(let ((@x302 (mp @x265 (quant-intro (refl (= $x50 $x50)) (= $x51 $x297)) $x297))) +(let (($x514 (or (not $x297) $x505))) +(let ((@x515 ((_ quant-inst ks$ xs$) $x514))) +(let ((@x824 (symm (unit-resolution (def-axiom (or $x283 $x100)) @x466 $x100) (= ?x99 ?x98)))) +(let ((@x939 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x786)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x786))) +(let (($x785 (<= ?x784 0))) +(let ((@x887 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x782) $x785)) (trans @x824 (symm (unit-resolution @x515 @x302 $x505) $x821) $x782) $x785))) +(let (($x688 (>= ?x686 0))) +(let ((@x855 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x282 $x688)) (unit-resolution (def-axiom (or $x283 $x117)) @x466 $x117) $x688))) +(let ((@x979 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x425 2)))) @x26 (not (>= ?x425 2))))) +(let (($x560 (<= ?x544 0))) +(let ((@x461 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x545) $x560)) (unit-resolution @x559 @x323 $x545) $x560))) +(let (($x763 (<= ?x758 0))) +(let ((@x658 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x756) $x763)) (unit-resolution ((_ th-lemma arith) (or false $x756)) @x26 $x756) $x763))) +(let (($x581 (<= ?x576 0))) +(let ((@x986 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x574) $x581)) (unit-resolution ((_ th-lemma arith) (or false $x574)) @x26 $x574) $x581))) +(let ((@x989 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x728) (<= ?x727 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x550 $x702)) @x740 $x733) @x323 $x728) (<= ?x727 0)))) +(let (($x510 (>= ?x502 0))) +(let ((@x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x510)) (unit-resolution @x508 @x309 $x503) $x510))) +(let ((@x998 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) (>= ?x396 0))) @x802 (>= ?x396 0)))) +(let ((@x1001 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x434) (<= ?x437 0))) (unit-resolution ((_ th-lemma arith) (or false $x434)) @x26 $x434) (<= ?x437 0)))) +(let ((@x1002 ((_ th-lemma arith farkas 1 -2 -2 -1 -2 1 1 1 1 1 1) @x1001 @x998 (hypothesis $x688) @x994 (hypothesis $x972) (hypothesis $x785) @x989 @x986 @x658 @x461 @x979 false))) +(let ((@x474 (unit-resolution (lemma @x1002 (or (not $x972) (not $x688) (not $x785))) @x855 @x887 (not $x972)))) +(let ((@x941 (unit-resolution @x474 ((_ th-lemma arith) @x939 @x427 @x880 @x872 @x902 @x899 $x972) false))) +(let ((@x942 (lemma @x941 $x283))) +(let ((@x340 (unit-resolution (def-axiom (or $x95 $x284 (not $x290))) @x295 (or $x95 $x284)))) +(let ((@x679 (unit-resolution @x340 @x942 $x95))) +(let ((@x889 (trans (symm (unit-resolution @x515 @x302 $x505) $x821) (monotonicity @x679 (= ?x504 ?x99)) $x100))) +(let (($x811 (not $x687))) +(let ((@x845 ((_ th-lemma arith assign-bounds 1 -1/2 -1/2 1/2 -1/2) (or $x688 (not $x413) (not $x465) (not $x443) (not $x509) $x861)))) +(let ((@x892 (unit-resolution @x845 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x397) $x413)) @x802 $x413) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x695)) @x679 $x695) @x793 (unit-resolution ((_ th-lemma arith) (or false $x465)) @x26 $x465) @x800 $x688))) +(let ((@x935 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x117 $x811 (not $x688))) (hypothesis $x282) (or $x811 (not $x688))))) +(let ((@x955 ((_ th-lemma arith farkas -2 -2 1 -1 1 1) (unit-resolution @x935 @x892 $x811) @x998 @x1001 @x994 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x134 $x694)) @x679 $x694) @x979 false))) +(let ((@x472 (unit-resolution (unit-resolution (def-axiom (or $x284 $x281 $x282)) @x942 $x283) (lemma @x955 $x117) $x281))) +(unit-resolution @x472 @x889 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) + 785615f585a02b3e6ed8608ecc9660ba5c4025e2 2 0 sat (error "line 9 column 10: proof is not available") diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/Nitpick/nitpick_hol.ML --- a/src/HOL/Tools/Nitpick/nitpick_hol.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/Nitpick/nitpick_hol.ML Mon Jun 01 18:59:21 2015 +0200 @@ -402,7 +402,7 @@ ((@{const_name plus_class.plus}, nat_T --> nat_T --> nat_T), 0), ((@{const_name minus_class.minus}, nat_T --> nat_T --> nat_T), 0), ((@{const_name times_class.times}, nat_T --> nat_T --> nat_T), 0), - ((@{const_name div_class.div}, nat_T --> nat_T --> nat_T), 0), + ((@{const_name Rings.divide}, nat_T --> nat_T --> nat_T), 0), ((@{const_name ord_class.less}, nat_T --> nat_T --> bool_T), 2), ((@{const_name ord_class.less_eq}, nat_T --> nat_T --> bool_T), 2), ((@{const_name of_nat}, nat_T --> int_T), 0), @@ -411,7 +411,7 @@ ((@{const_name plus_class.plus}, int_T --> int_T --> int_T), 0), ((@{const_name minus_class.minus}, int_T --> int_T --> int_T), 0), ((@{const_name times_class.times}, int_T --> int_T --> int_T), 0), - ((@{const_name div_class.div}, int_T --> int_T --> int_T), 0), + ((@{const_name Rings.divide}, int_T --> int_T --> int_T), 0), ((@{const_name uminus_class.uminus}, int_T --> int_T), 0), ((@{const_name ord_class.less}, int_T --> int_T --> bool_T), 2), ((@{const_name ord_class.less_eq}, int_T --> int_T --> bool_T), 2)] diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/Nitpick/nitpick_nut.ML --- a/src/HOL/Tools/Nitpick/nitpick_nut.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/Nitpick/nitpick_nut.ML Mon Jun 01 18:59:21 2015 +0200 @@ -553,7 +553,7 @@ | (Const (x as (s as @{const_name times_class.times}, T)), []) => if is_built_in_const x then Cst (Multiply, T, Any) else ConstName (s, T, Any) - | (Const (x as (s as @{const_name div_class.div}, T)), []) => + | (Const (x as (s as @{const_name Rings.divide}, T)), []) => if is_built_in_const x then Cst (Divide, T, Any) else ConstName (s, T, Any) | (t0 as Const (x as (@{const_name ord_class.less}, _)), diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/Nitpick/nitpick_preproc.ML --- a/src/HOL/Tools/Nitpick/nitpick_preproc.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/Nitpick/nitpick_preproc.ML Mon Jun 01 18:59:21 2015 +0200 @@ -56,7 +56,7 @@ let fun aux (t1 $ t2) = aux t1 orelse aux t2 | aux (Const (s, T)) = - ((s = @{const_name times} orelse s = @{const_name div}) andalso + ((s = @{const_name times} orelse s = @{const_name Rings.divide}) andalso is_integer_type (body_type T)) orelse (String.isPrefix numeral_prefix s andalso let val n = the (Int.fromString (unprefix numeral_prefix s)) in diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/Qelim/cooper.ML --- a/src/HOL/Tools/Qelim/cooper.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/Qelim/cooper.ML Mon Jun 01 18:59:21 2015 +0200 @@ -756,7 +756,7 @@ | Const(@{const_name Groups.minus},_)$l$r => isnum l andalso isnum r | Const(@{const_name Power.power},_)$l$r => isnum l andalso isnum r | Const(@{const_name Divides.mod},_)$l$r => isnum l andalso isnum r - | Const(@{const_name Divides.div},_)$l$r => isnum l andalso isnum r + | Const(@{const_name Rings.divide},_)$l$r => isnum l andalso isnum r | _ => is_number t orelse can HOLogic.dest_nat t fun ty cts t = diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/SMT/z3_interface.ML --- a/src/HOL/Tools/SMT/z3_interface.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/SMT/z3_interface.ML Mon Jun 01 18:59:21 2015 +0200 @@ -34,7 +34,7 @@ {logic = K "", fp_kinds = [BNF_Util.Least_FP], serialize = #serialize (SMTLIB_Interface.translate_config ctxt)} - fun is_div_mod @{const div (int)} = true + fun is_div_mod @{const divide (int)} = true | is_div_mod @{const mod (int)} = true | is_div_mod _ = false diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/SMT/z3_real.ML --- a/src/HOL/Tools/SMT/z3_real.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/SMT/z3_real.ML Mon Jun 01 18:59:21 2015 +0200 @@ -12,13 +12,13 @@ fun real_term_parser (SMTLIB.Dec (i, 0), []) = SOME (HOLogic.mk_number @{typ Real.real} i) | real_term_parser (SMTLIB.Sym "/", [t1, t2]) = - SOME (@{term "inverse_class.divide :: real => _"} $ t1 $ t2) + SOME (@{term "Rings.divide :: real => _"} $ t1 $ t2) | real_term_parser (SMTLIB.Sym "to_real", [t]) = SOME (@{term "Real.real :: int => _"} $ t) | real_term_parser _ = NONE fun abstract abs t = (case t of - (c as @{term "inverse_class.divide :: real => _"}) $ t1 $ t2 => + (c as @{term "Rings.divide :: real => _"}) $ t1 $ t2 => abs t1 ##>> abs t2 #>> (fn (u1, u2) => SOME (c $ u1 $ u2)) | (c as @{term "Real.real :: int => _"}) $ t => abs t #>> (fn u => SOME (c $ u)) diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/lin_arith.ML --- a/src/HOL/Tools/lin_arith.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/lin_arith.ML Mon Jun 01 18:59:21 2015 +0200 @@ -152,7 +152,7 @@ (SOME t', m'') => (SOME (mC $ s' $ t'), m'') | (NONE, m'') => (SOME s', m'')) | (NONE, m') => demult (t, m'))) - | demult (atom as (mC as Const (@{const_name Fields.divide}, T)) $ s $ t, m) = + | demult (atom as (mC as Const (@{const_name Rings.divide}, T)) $ s $ t, m) = (* FIXME: Shouldn't we simplify nested quotients, e.g. '(s/t)/u' could become 's/(t*u)', and '(s*t)/u' could become 's*(t/u)' ? Note that if we choose to do so here, the simpset used by arith must be able to @@ -219,7 +219,7 @@ (case demult thy inj_consts (all, m) of (NONE, m') => (p, Rat.add i m') | (SOME u, m') => add_atom u m' pi) - | poly (all as Const (@{const_name Fields.divide}, T) $ _ $ _, m, pi as (p, i)) = + | poly (all as Const (@{const_name Rings.divide}, T) $ _ $ _, m, pi as (p, i)) = if of_field_sort thy (domain_type T) then (case demult thy inj_consts (all, m) of (NONE, m') => (p, Rat.add i m') @@ -302,7 +302,7 @@ @{const_name Groups.minus}, "Int.nat" (*DYNAMIC BINDING!*), "Divides.div_class.mod" (*DYNAMIC BINDING!*), - "Divides.div_class.div" (*DYNAMIC BINDING!*)] a + @{const_name Rings.divide}] a | _ => (if Context_Position.is_visible ctxt then warning ("Lin. Arith.: wrong format for split rule " ^ Display.string_of_thm ctxt thm) @@ -501,7 +501,7 @@ (* ?P ((?n::nat) div (numeral ?k)) = ((numeral ?k = 0 --> ?P 0) & (~ (numeral ?k = 0) --> (ALL i j. j < numeral ?k --> ?n = numeral ?k * i + j --> ?P i))) *) - | (Const ("Divides.div_class.div", Type ("fun", [@{typ nat}, _])), [t1, t2]) => + | (Const (@{const_name Rings.divide}, Type ("fun", [@{typ nat}, _])), [t1, t2]) => let val rev_terms = rev terms val zero = Const (@{const_name Groups.zero}, split_type) @@ -592,7 +592,7 @@ (numeral ?k < 0 --> (ALL i j. numeral ?k < j & j <= 0 & ?n = numeral ?k * i + j --> ?P i))) *) - | (Const ("Divides.div_class.div", + | (Const (@{const_name Rings.divide}, Type ("fun", [Type ("Int.int", []), _])), [t1, t2]) => let val rev_terms = rev terms diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/nat_numeral_simprocs.ML --- a/src/HOL/Tools/nat_numeral_simprocs.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/nat_numeral_simprocs.ML Mon Jun 01 18:59:21 2015 +0200 @@ -288,8 +288,8 @@ structure DivCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon - val mk_bal = HOLogic.mk_binop @{const_name Divides.div} - val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT + val mk_bal = HOLogic.mk_binop @{const_name Rings.divide} + val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} HOLogic.natT val cancel = @{thm nat_mult_div_cancel1} RS trans val neg_exchanges = false ); @@ -393,8 +393,8 @@ structure DivideCancelFactor = ExtractCommonTermFun (open CancelFactorCommon - val mk_bal = HOLogic.mk_binop @{const_name Divides.div} - val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT + val mk_bal = HOLogic.mk_binop @{const_name Rings.divide} + val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} HOLogic.natT fun simp_conv _ _ = SOME @{thm nat_mult_div_cancel_disj} ); diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/numeral_simprocs.ML --- a/src/HOL/Tools/numeral_simprocs.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/numeral_simprocs.ML Mon Jun 01 18:59:21 2015 +0200 @@ -116,7 +116,7 @@ Fractions are reduced later by the cancel_numeral_factor simproc.*) fun add_frac ((p1, q1), (p2, q2)) = (p1 * q2 + p2 * q1, q1 * q2); -val mk_divide = HOLogic.mk_binop @{const_name Fields.divide}; +val mk_divide = HOLogic.mk_binop @{const_name Rings.divide}; (*Build term (p / q) * t*) fun mk_fcoeff ((p, q), t) = @@ -125,7 +125,7 @@ (*Express t as a product of a fraction with other sorted terms*) fun dest_fcoeff sign (Const (@{const_name Groups.uminus}, _) $ t) = dest_fcoeff (~sign) t - | dest_fcoeff sign (Const (@{const_name Fields.divide}, _) $ t $ u) = + | dest_fcoeff sign (Const (@{const_name Rings.divide}, _) $ t $ u) = let val (p, t') = dest_coeff sign t val (q, u') = dest_coeff 1 u in (mk_frac (p, q), mk_divide (t', u')) end @@ -401,8 +401,8 @@ (*Version for semiring_div*) structure DivCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon - val mk_bal = HOLogic.mk_binop @{const_name Divides.div} - val dest_bal = HOLogic.dest_bin @{const_name Divides.div} dummyT + val mk_bal = HOLogic.mk_binop @{const_name Rings.divide} + val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} dummyT val cancel = @{thm div_mult_mult1} RS trans val neg_exchanges = false ) @@ -410,8 +410,8 @@ (*Version for fields*) structure DivideCancelNumeralFactor = CancelNumeralFactorFun (open CancelNumeralFactorCommon - val mk_bal = HOLogic.mk_binop @{const_name Fields.divide} - val dest_bal = HOLogic.dest_bin @{const_name Fields.divide} dummyT + val mk_bal = HOLogic.mk_binop @{const_name Rings.divide} + val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} dummyT val cancel = @{thm mult_divide_mult_cancel_left} RS trans val neg_exchanges = false ) @@ -548,8 +548,8 @@ (*for semirings with division*) structure DivCancelFactor = ExtractCommonTermFun (open CancelFactorCommon - val mk_bal = HOLogic.mk_binop @{const_name Divides.div} - val dest_bal = HOLogic.dest_bin @{const_name Divides.div} dummyT + val mk_bal = HOLogic.mk_binop @{const_name Rings.divide} + val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} dummyT fun simp_conv _ _ = SOME @{thm div_mult_mult1_if} ); @@ -571,8 +571,8 @@ (*Version for all fields, including unordered ones (type complex).*) structure DivideCancelFactor = ExtractCommonTermFun (open CancelFactorCommon - val mk_bal = HOLogic.mk_binop @{const_name Fields.divide} - val dest_bal = HOLogic.dest_bin @{const_name Fields.divide} dummyT + val mk_bal = HOLogic.mk_binop @{const_name Rings.divide} + val dest_bal = HOLogic.dest_bin @{const_name Rings.divide} dummyT fun simp_conv _ _ = SOME @{thm mult_divide_mult_cancel_left_if} ); @@ -620,13 +620,13 @@ val (l,r) = Thm.dest_binop ct val T = Thm.ctyp_of_cterm l in (case (Thm.term_of l, Thm.term_of r) of - (Const(@{const_name Fields.divide},_)$_$_, _) => + (Const(@{const_name Rings.divide},_)$_$_, _) => let val (x,y) = Thm.dest_binop l val z = r val _ = map (HOLogic.dest_number o Thm.term_of) [x,y,z] val ynz = prove_nz ctxt T y in SOME (Thm.implies_elim (instantiate' [SOME T] (map SOME [y,x,z]) add_frac_num) ynz) end - | (_, Const (@{const_name Fields.divide},_)$_$_) => + | (_, Const (@{const_name Rings.divide},_)$_$_) => let val (x,y) = Thm.dest_binop r val z = l val _ = map (HOLogic.dest_number o Thm.term_of) [x,y,z] val ynz = prove_nz ctxt T y @@ -636,49 +636,49 @@ end handle CTERM _ => NONE | TERM _ => NONE | THM _ => NONE - fun is_number (Const(@{const_name Fields.divide},_)$a$b) = is_number a andalso is_number b + fun is_number (Const(@{const_name Rings.divide},_)$a$b) = is_number a andalso is_number b | is_number t = can HOLogic.dest_number t val is_number = is_number o Thm.term_of fun proc3 phi ctxt ct = (case Thm.term_of ct of - Const(@{const_name Orderings.less},_)$(Const(@{const_name Fields.divide},_)$_$_)$_ => + Const(@{const_name Orderings.less},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ => let val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop val _ = map is_number [a,b,c] val T = Thm.ctyp_of_cterm c val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_less_eq"} in SOME (mk_meta_eq th) end - | Const(@{const_name Orderings.less_eq},_)$(Const(@{const_name Fields.divide},_)$_$_)$_ => + | Const(@{const_name Orderings.less_eq},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ => let val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop val _ = map is_number [a,b,c] val T = Thm.ctyp_of_cterm c val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_le_eq"} in SOME (mk_meta_eq th) end - | Const(@{const_name HOL.eq},_)$(Const(@{const_name Fields.divide},_)$_$_)$_ => + | Const(@{const_name HOL.eq},_)$(Const(@{const_name Rings.divide},_)$_$_)$_ => let val ((a,b),c) = Thm.dest_binop ct |>> Thm.dest_binop val _ = map is_number [a,b,c] val T = Thm.ctyp_of_cterm c val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "divide_eq_eq"} in SOME (mk_meta_eq th) end - | Const(@{const_name Orderings.less},_)$_$(Const(@{const_name Fields.divide},_)$_$_) => + | Const(@{const_name Orderings.less},_)$_$(Const(@{const_name Rings.divide},_)$_$_) => let val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop val _ = map is_number [a,b,c] val T = Thm.ctyp_of_cterm c val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "less_divide_eq"} in SOME (mk_meta_eq th) end - | Const(@{const_name Orderings.less_eq},_)$_$(Const(@{const_name Fields.divide},_)$_$_) => + | Const(@{const_name Orderings.less_eq},_)$_$(Const(@{const_name Rings.divide},_)$_$_) => let val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop val _ = map is_number [a,b,c] val T = Thm.ctyp_of_cterm c val th = instantiate' [SOME T] (map SOME [a,b,c]) @{thm "le_divide_eq"} in SOME (mk_meta_eq th) end - | Const(@{const_name HOL.eq},_)$_$(Const(@{const_name Fields.divide},_)$_$_) => + | Const(@{const_name HOL.eq},_)$_$(Const(@{const_name Rings.divide},_)$_$_) => let val (a,(b,c)) = Thm.dest_binop ct ||> Thm.dest_binop val _ = map is_number [a,b,c] diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Tools/semiring_normalizer.ML --- a/src/HOL/Tools/semiring_normalizer.ML Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Tools/semiring_normalizer.ML Mon Jun 01 18:59:21 2015 +0200 @@ -127,12 +127,12 @@ let fun numeral_is_const ct = case Thm.term_of ct of - Const (@{const_name Fields.divide},_) $ a $ b => + Const (@{const_name Rings.divide},_) $ a $ b => can HOLogic.dest_number a andalso can HOLogic.dest_number b | Const (@{const_name Fields.inverse},_)$t => can HOLogic.dest_number t | t => can HOLogic.dest_number t fun dest_const ct = ((case Thm.term_of ct of - Const (@{const_name Fields.divide},_) $ a $ b=> + Const (@{const_name Rings.divide},_) $ a $ b=> Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b)) | Const (@{const_name Fields.inverse},_)$t => Rat.inv (Rat.rat_of_int (snd (HOLogic.dest_number t))) diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/Word/Word.thy Mon Jun 01 18:59:21 2015 +0200 @@ -307,7 +307,7 @@ by (metis bintr_ariths(4)) definition - word_div_def: "a div b = word_of_int (uint a div uint b)" + word_div_def: "divide a b = word_of_int (uint a div uint b)" definition word_mod_def: "a mod b = word_of_int (uint a mod uint b)" diff -r 5cdf3903a302 -r d46de31a50c4 src/HOL/ex/Dedekind_Real.thy --- a/src/HOL/ex/Dedekind_Real.thy Mon Jun 01 18:59:21 2015 +0200 +++ b/src/HOL/ex/Dedekind_Real.thy Mon Jun 01 18:59:21 2015 +0200 @@ -102,7 +102,7 @@ preal_inverse_def: "inverse R == Abs_preal (inverse_set (Rep_preal R))" -definition "R / S = R * inverse (S\preal)" +definition "divide R S = R * inverse (S\preal)" definition preal_one_def: @@ -1222,7 +1222,7 @@ real_inverse_def: "inverse (R::real) = (THE S. (R = 0 & S = 0) | S * R = 1)" definition - real_divide_def: "R / (S::real) = R * inverse S" + real_divide_def: "divide R (S::real) = R * inverse S" definition real_le_def: "z \ (w::real) \